These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26302694)
1. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S,Se)4 and increases photovoltaic efficiency. Xin H; Vorpahl SM; Collord AD; Braly IL; Uhl AR; Krueger BW; Ginger DS; Hillhouse HW Phys Chem Chem Phys; 2015 Oct; 17(37):23859-66. PubMed ID: 26302694 [TBL] [Abstract][Full Text] [Related]
2. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells. Leite MS; Abashin M; Lezec HJ; Gianfrancesco A; Talin AA; Zhitenev NB ACS Nano; 2014 Nov; 8(11):11883-90. PubMed ID: 25317926 [TBL] [Abstract][Full Text] [Related]
3. Kesterite Cu2ZnSn(S,Se)4 Solar Cells with beyond 8% Efficiency by a Sol-Gel and Selenization Process. Liu F; Zeng F; Song N; Jiang L; Han Z; Su Z; Yan C; Wen X; Hao X; Liu Y ACS Appl Mater Interfaces; 2015 Jul; 7(26):14376-83. PubMed ID: 26080031 [TBL] [Abstract][Full Text] [Related]
4. Impact of Na Dynamics at the Cu2ZnSn(S,Se)4/CdS Interface During Post Low Temperature Treatment of Absorbers. Xie H; López-Marino S; Olar T; Sánchez Y; Neuschitzer M; Oliva F; Giraldo S; Izquierdo-Roca V; Lauermann I; Pérez-Rodríguez A; Saucedo E ACS Appl Mater Interfaces; 2016 Feb; 8(7):5017-24. PubMed ID: 26836750 [TBL] [Abstract][Full Text] [Related]
5. Further Boosting Solar Cell Performance via Bandgap-Graded Ag Doping in Cu Zhou T; Huang J; Qian S; Wang X; Yang G; Yao B; Li Y; Jiang Y; Liu Y ACS Appl Mater Interfaces; 2023 Jan; 15(1):1073-1084. PubMed ID: 36534121 [TBL] [Abstract][Full Text] [Related]
6. Achieving Low Karade V; Choi E; Gang MG; Yoo H; Lokhande A; Babar P; Jang JS; Seidel J; Yun JS; Park J; Kim JH ACS Appl Mater Interfaces; 2021 Jan; 13(1):429-437. PubMed ID: 33393763 [TBL] [Abstract][Full Text] [Related]
7. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Chen S; Walsh A; Gong XG; Wei SH Adv Mater; 2013 Mar; 25(11):1522-39. PubMed ID: 23401176 [TBL] [Abstract][Full Text] [Related]
8. Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu Jeong WL; Kim KP; Kim J; Park HK; Min JH; Lee JS; Mun SH; Kim ST; Jang JH; Jo W; Lee DS Adv Sci (Weinh); 2020 Nov; 7(21):1903085. PubMed ID: 33173721 [TBL] [Abstract][Full Text] [Related]
9. Unveiling Defect-Mediated Charge-Carrier Recombination at the Nanometer Scale in Polycrystalline Solar Cells. Yoon Y; Yang WD; Ha D; Haney PM; Hirsch D; Yoon HP; Sharma R; Zhitenev NB ACS Appl Mater Interfaces; 2019 Dec; 11(50):47037-47046. PubMed ID: 31747519 [TBL] [Abstract][Full Text] [Related]
10. Substitution of Ag for Cu in Cu Wu Y; Sui Y; He W; Zeng F; Wang Z; Wang F; Yao B; Yang L Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31947756 [TBL] [Abstract][Full Text] [Related]
11. Tuning the Band Gap of Cu₂ZnSn(S,Se)₄ Thin Films via Lithium Alloying. Yang Y; Kang X; Huang L; Pan D ACS Appl Mater Interfaces; 2016 Mar; 8(8):5308-13. PubMed ID: 26837657 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of a Cu2ZnSn(S,Se)4 photovoltaic device by a low-toxicity ethanol solution process. Wang G; Zhao W; Cui Y; Tian Q; Gao S; Huang L; Pan D ACS Appl Mater Interfaces; 2013 Oct; 5(20):10042-7. PubMed ID: 24050660 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source. Zhao W; Wang G; Tian Q; Yang Y; Huang L; Pan D ACS Appl Mater Interfaces; 2014 Aug; 6(15):12650-5. PubMed ID: 25000474 [TBL] [Abstract][Full Text] [Related]
14. High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double In2S3/CdS emitter. Kim J; Hiroi H; Todorov TK; Gunawan O; Kuwahara M; Gokmen T; Nair D; Hopstaken M; Shin B; Lee YS; Wang W; Sugimoto H; Mitzi DB Adv Mater; 2014 Nov; 26(44):7427-31. PubMed ID: 25155874 [TBL] [Abstract][Full Text] [Related]
15. Antimony Doping in Solution-processed Cu2 ZnSn(S,Se)4 Solar Cells. Tai KF; Fu D; Chiam SY; Huan CH; Batabyal SK; Wong LH ChemSusChem; 2015 Oct; 8(20):3504-11. PubMed ID: 26376602 [TBL] [Abstract][Full Text] [Related]
16. Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4:Na nanocrystals. Zhou H; Song TB; Hsu WC; Luo S; Ye S; Duan HS; Hsu CJ; Yang W; Yang Y J Am Chem Soc; 2013 Oct; 135(43):15998-6001. PubMed ID: 24128165 [TBL] [Abstract][Full Text] [Related]
17. Pd(II)/Pd(IV) redox shuttle to suppress vacancy defects at grain boundaries for efficient kesterite solar cells. Wang J; Shi J; Yin K; Meng F; Wang S; Lou L; Zhou J; Xu X; Wu H; Luo Y; Li D; Chen S; Meng Q Nat Commun; 2024 May; 15(1):4344. PubMed ID: 38773145 [TBL] [Abstract][Full Text] [Related]
18. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology. Mitzi DB; Gunawan O; Todorov TK; Barkhouse DA Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110432. PubMed ID: 23816909 [TBL] [Abstract][Full Text] [Related]
19. Impact of Sn(S,Se) secondary phases in Cu2ZnSn(S,Se)4 solar cells: a chemical route for their selective removal and absorber surface passivation. Xie H; Sánchez Y; López-Marino S; Espíndola-Rodríguez M; Neuschitzer M; Sylla D; Fairbrother A; Izquierdo-Roca V; Pérez-Rodríguez A; Saucedo E ACS Appl Mater Interfaces; 2014 Aug; 6(15):12744-51. PubMed ID: 25033026 [TBL] [Abstract][Full Text] [Related]
20. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process. Kim GY; Kim JR; Jo W; Son DH; Kim DH; Kang JK Nanoscale Res Lett; 2014 Jan; 9(1):10. PubMed ID: 24397924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]