BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26302845)

  • 1. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles.
    Tan Y; Ma S; Liu C; Yu W; Han F
    Microbiol Res; 2015 Sep; 178():35-41. PubMed ID: 26302845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity.
    Kaplan JB; Ragunath C; Ramasubbu N; Fine DH
    J Bacteriol; 2003 Aug; 185(16):4693-8. PubMed ID: 12896987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimicrobial and antibiofilm efficacy of triclosan and DispersinB combination.
    Darouiche RO; Mansouri MD; Gawande PV; Madhyastha S
    J Antimicrob Chemother; 2009 Jul; 64(1):88-93. PubMed ID: 19447791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Twofold enhanced dispersin B activity by N-terminal fusion to silver-binding peptide for biofilm eradication.
    Chen KJ; Lee CK
    Int J Biol Macromol; 2018 Oct; 118(Pt A):419-426. PubMed ID: 29908271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.
    Vo DT; Sabrina S; Lee CK
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():544-551. PubMed ID: 28183643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the Thermo-Stability and Anti-Biofilm Activity of Alginate Lyase by Immobilization on Low Molecular Weight Chitosan Nanoparticles.
    Li S; Wang Y; Li X; Lee BS; Jung S; Lee MS
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of carboxymethyl chitosan against Candida tropicalis and Staphylococcus epidermidis monomicrobial and polymicrobial biofilms.
    Tan Y; Leonhard M; Ma S; Moser D; Schneider-Stickler B
    Int J Biol Macromol; 2018 Apr; 110():150-156. PubMed ID: 28834707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of lipopeptide carboxymethyl chitosan nanoparticles on Staphylococcus aureus biofilm.
    Jiang XH; Zhou WM; He YZ; Wang Y; Lv B; Wang XM
    J Biol Regul Homeost Agents; 2017; 31(3):737-743. PubMed ID: 28956426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit.
    Elbarbary AM; Mostafa TB
    Carbohydr Polym; 2014 Apr; 104():109-17. PubMed ID: 24607167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic detachment of Staphylococcus epidermidis biofilms.
    Kaplan JB; Ragunath C; Velliyagounder K; Fine DH; Ramasubbu N
    Antimicrob Agents Chemother; 2004 Jul; 48(7):2633-6. PubMed ID: 15215120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against
    Luo W; Jiang Y; Liu J; Sun B; Gao X; Algharib SA; Guo D; Wei J; Wei Y
    J Vet Sci; 2024 Mar; 25(2):e30. PubMed ID: 38568831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-aggregated nanoparticles from linoleic acid modified carboxymethyl chitosan: Synthesis, characterization and application in vitro.
    Tan YL; Liu CG
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):178-82. PubMed ID: 19124228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of a stable and robust nanobiocatalyst by efficiently immobilizing of pectinase onto cyanuric chloride-functionalized chitosan grafted magnetic nanoparticles.
    Soozanipour A; Taheri-Kafrani A; Barkhori M; Nasrollahzadeh M
    J Colloid Interface Sci; 2019 Feb; 536():261-270. PubMed ID: 30368098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chitosan-based rechargeable long-term antimicrobial and biofilm-controlling systems.
    Cao Z; Sun Y
    J Biomed Mater Res A; 2009 Jun; 89(4):960-7. PubMed ID: 18470925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical Properties and Anti-Biofilm Activity of Chitosan-Immobilized Papain.
    Baidamshina DR; Koroleva VA; Olshannikova SS; Trizna EY; Bogachev MI; Artyukhov VG; Holyavka MG; Kayumov AR
    Mar Drugs; 2021 Mar; 19(4):. PubMed ID: 33807362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties.
    Elchinger PH; Delattre C; Faure S; Roy O; Badel S; Bernardi T; Taillefumier C; Michaud P
    Int J Biol Macromol; 2015 Jan; 72():1063-8. PubMed ID: 25451753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Immobilization of a Biofilm-Releasing Glycoside Hydrolase Dispersin B on Magnetic Nanoparticles.
    Liu Z; Zhao Z; Zeng K; Xia Y; Xu W; Wang R; Guo J; Xie H
    Appl Biochem Biotechnol; 2022 Feb; 194(2):737-747. PubMed ID: 34524634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo antibiofilm effect of cerium, chitosan and hamamelitannin against usual agents of catheter-related bloodstream infections.
    Cobrado L; Silva-Dias A; Azevedo MM; Pina-Vaz C; Rodrigues AG
    J Antimicrob Chemother; 2013 Jan; 68(1):126-30. PubMed ID: 22991425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comperative study of catalase immobilization on chitosan, magnetic chitosan and chitosan-clay composite beads.
    Başak E; Aydemir T; Dinçer A; Becerik SÇ
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):408-13. PubMed ID: 23687952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immobilized enzymes as potent antibiofilm agent.
    Lahiri D; Nag M; Dey A; Sarkar T; Ray RR; Rebezov M; Shariati MA; Thiruvengadam M; Simal-Gandara J
    Biotechnol Prog; 2022 Sep; 38(5):e3281. PubMed ID: 35690881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.