BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26302859)

  • 1. Characterisation of dry powder inhaler formulations using atomic force microscopy.
    Weiss C; McLoughlin P; Cathcart H
    Int J Pharm; 2015 Oct; 494(1):393-407. PubMed ID: 26302859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the cohesion-adhesion balance approach to colloidal probe atomic force microscopy and the measurement of Hansen partial solubility parameters by inverse gas chromatography for the prediction of dry powder inhalation performance.
    Jones MD; Buckton G
    Int J Pharm; 2016 Jul; 509(1-2):419-430. PubMed ID: 27265314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An investigation into the dispersion mechanisms of ternary dry powder inhaler formulations by the quantification of interparticulate forces.
    Jones MD; Hooton JC; Dawson ML; Ferrie AR; Price R
    Pharm Res; 2008 Feb; 25(2):337-48. PubMed ID: 17952568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the behavior of novel sugar carriers for dry powder inhaler formulations via the use of a cohesive-adhesive force balance approach.
    Hooton JC; Jones MD; Price R
    J Pharm Sci; 2006 Jun; 95(6):1288-97. PubMed ID: 16637052
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach.
    Hooton JC; Jones MD; Harris H; Shur J; Price R
    Drug Dev Ind Pharm; 2008 Sep; 34(9):974-83. PubMed ID: 18622874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO; Molokhia AM; Elsayed MM
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion forces in interactive mixtures for dry powder inhalers--evaluation of a new measuring method.
    Lohrmann M; Kappl M; Butt HJ; Urbanetz NA; Lippold BC
    Eur J Pharm Biopharm; 2007 Sep; 67(2):579-86. PubMed ID: 17418548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards the optimisation and adaptation of dry powder inhalers.
    Cui Y; Schmalfuß S; Zellnitz S; Sommerfeld M; Urbanetz N
    Int J Pharm; 2014 Aug; 470(1-2):120-32. PubMed ID: 24792975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of crystal form of ipratropium bromide on micronisation and aerosolisation behaviour in dry powder inhaler formulations.
    Shur J; Kubavat HA; Ruecroft G; Hipkiss D; Price R
    J Pharm Pharmacol; 2012 Sep; 64(9):1326-36. PubMed ID: 22881444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cohesive-adhesive balances in dry powder inhaler formulations I: Direct quantification by atomic force microscopy.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Sep; 21(9):1591-7. PubMed ID: 15497684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation into the relationship between carrier-based dry powder inhalation performance and formulation cohesive-adhesive force balances.
    Jones MD; Harris H; Hooton JC; Shur J; King GS; Mathoulin CA; Nichol K; Smith TL; Dawson ML; Ferrie AR; Price R
    Eur J Pharm Biopharm; 2008 Jun; 69(2):496-507. PubMed ID: 18191553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation.
    Kubavat HA; Shur J; Ruecroft G; Hipkiss D; Price R
    Int J Pharm; 2012 Jul; 430(1-2):26-33. PubMed ID: 22449413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cohesive-adhesive balances in dry powder inhaler formulations II: influence on fine particle delivery characteristics.
    Begat P; Morton DA; Staniforth JN; Price R
    Pharm Res; 2004 Oct; 21(10):1826-33. PubMed ID: 15553229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM; Amaro MI; Paluch KJ; Tajber L
    Adv Drug Deliv Rev; 2014 Aug; 75():32-52. PubMed ID: 24735676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry powder aerosol delivery systems: current and future research directions.
    Chan HK
    J Aerosol Med; 2006; 19(1):21-7. PubMed ID: 16551211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of drug morphology on aerosolisation efficiency of dry powder inhaler formulations.
    Adi H; Traini D; Chan HK; Young PM
    J Pharm Sci; 2008 Jul; 97(7):2780-8. PubMed ID: 17894369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-particle corrugation, adhesion and inhalation aerosol efficiency.
    Adi S; Adi H; Tang P; Traini D; Chan HK; Young PM
    Eur J Pharm Sci; 2008 Sep; 35(1-2):12-8. PubMed ID: 18586091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.