These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26303169)
1. Influence of virtual intervention and blood rheology on mass transfer through thoracic aortic aneurysm. Lei Y; Chen M; Xiong G; Chen J J Biomech; 2015 Sep; 48(12):3312-22. PubMed ID: 26303169 [TBL] [Abstract][Full Text] [Related]
2. Hemodynamic study of overlapping bare-metal stents intervention to aortic aneurysm. Zhang P; Sun A; Zhan F; Luan J; Deng X J Biomech; 2014 Nov; 47(14):3524-30. PubMed ID: 25262876 [TBL] [Abstract][Full Text] [Related]
3. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. Liu X; Fan Y; Deng X; Zhan F J Biomech; 2011 Apr; 44(6):1123-31. PubMed ID: 21310418 [TBL] [Abstract][Full Text] [Related]
4. Computer modeling for the prediction of thoracic aortic stent graft collapse. Pasta S; Cho JS; Dur O; Pekkan K; Vorp DA J Vasc Surg; 2013 May; 57(5):1353-61. PubMed ID: 23313184 [TBL] [Abstract][Full Text] [Related]
5. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
6. Characterizing saccular aortic arch aneurysms from the geometry-flow dynamics relationship. Natsume K; Shiiya N; Takehara Y; Sugiyama M; Satoh H; Yamashita K; Washiyama N J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1413-1420.e1. PubMed ID: 28027791 [TBL] [Abstract][Full Text] [Related]
7. Examination of near-wall hemodynamic parameters in the renal bridging stent of various stent graft configurations for repairing visceral branched aortic aneurysms. Suess T; Anderson J; Danielson L; Pohlson K; Remund T; Blears E; Gent S; Kelly P J Vasc Surg; 2016 Sep; 64(3):788-96. PubMed ID: 26209577 [TBL] [Abstract][Full Text] [Related]
9. Numerical investigation of mass transport through patient-specific deformed aortae. Chen J; Gutmark E; Mylavarapu G; Backeljauw PF; Gutmark-Little I J Biomech; 2014 Jan; 47(2):544-52. PubMed ID: 24210472 [TBL] [Abstract][Full Text] [Related]
10. Effects of Microporous Stent Graft on the Descending Aortic Aneurysm: A Patient-Specific Computational Fluid Dynamics Study. Ong CW; Ho P; Leo HL Artif Organs; 2016 Nov; 40(11):E230-E240. PubMed ID: 28374412 [TBL] [Abstract][Full Text] [Related]
11. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Khan MO; Steinman DA; Valen-Sendstad K Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717 [TBL] [Abstract][Full Text] [Related]
12. Computational prediction of hemodynamical and biomechanical alterations induced by aneurysm dilatation in patient-specific ascending thoracic aortas. Jayendiran R; Condemi F; Campisi S; Viallon M; Croisille P; Avril S Int J Numer Method Biomed Eng; 2020 Jun; 36(6):e3326. PubMed ID: 32087044 [TBL] [Abstract][Full Text] [Related]
13. Aortic hemodynamics after thoracic endovascular aortic repair, with particular attention to the bird-beak configuration. van Bogerijen GH; Auricchio F; Conti M; Lefieux A; Reali A; Veneziani A; Tolenaar JL; Moll FL; Rampoldi V; Trimarchi S J Endovasc Ther; 2014 Dec; 21(6):791-802. PubMed ID: 25453880 [TBL] [Abstract][Full Text] [Related]
14. Non-newtonian and flow pulsatility effects in simulation models of a stented intracranial aneurysm. Cavazzuti M; Atherton MA; Collins MW; Barozzi GS Proc Inst Mech Eng H; 2011 Jun; 225(6):597-609. PubMed ID: 22034743 [TBL] [Abstract][Full Text] [Related]
15. The quantification of hemodynamic parameters downstream of a Gianturco Zenith stent wire using newtonian and non-newtonian analog fluids in a pulsatile flow environment. Walker AM; Johnston CR; Rival DE J Biomech Eng; 2012 Nov; 134(11):111001. PubMed ID: 23387783 [TBL] [Abstract][Full Text] [Related]
16. Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits: association with age. Peiffer V; Rowland EM; Cremers SG; Weinberg PD; Sherwin SJ Atherosclerosis; 2012 Jul; 223(1):114-21. PubMed ID: 22658260 [TBL] [Abstract][Full Text] [Related]
17. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface. Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707 [TBL] [Abstract][Full Text] [Related]
18. Impact of aortic repair based on flow field computer simulation within the thoracic aorta. Filipovic N; Milasinovic D; Zdravkovic N; Böckler D; von Tengg-Kobligk H Comput Methods Programs Biomed; 2011 Mar; 101(3):243-52. PubMed ID: 21316789 [TBL] [Abstract][Full Text] [Related]
19. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model. Boersen JT; Groot Jebbink E; Versluis M; Slump CH; Ku DN; de Vries JPM; Reijnen MMPJ J Vasc Surg; 2017 Dec; 66(6):1844-1853. PubMed ID: 28285931 [TBL] [Abstract][Full Text] [Related]