These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 26303422)

  • 1. Current Advances in the Identification and Characterization of Putative Drug and Vaccine Targets in the Bacterial Genomes.
    Shahbaaz M; Bisetty K; Ahmad F; Hassan MI
    Curr Top Med Chem; 2016; 16(9):1040-69. PubMed ID: 26303422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials.
    Muzzi A; Masignani V; Rappuoli R
    Drug Discov Today; 2007 Jun; 12(11-12):429-39. PubMed ID: 17532526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets.
    Mienda BS; Salihu R; Adamu A; Idris S
    Future Microbiol; 2018 Mar; 13():455-467. PubMed ID: 29469596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Extracellular Bacterial HtrA Proteins as Potential Therapeutic Targets and Vaccine Candidates.
    Skórko-Glonek J; Figaj D; Zarzecka U; Przepiora T; Renke J; Lipinska B
    Curr Med Chem; 2017; 24(20):2174-2204. PubMed ID: 28019638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching for drug targets in microbial genomes.
    Galperin MY; Koonin EV
    Curr Opin Biotechnol; 1999 Dec; 10(6):571-8. PubMed ID: 10600691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.
    Ghosh S; Prava J; Samal HB; Suar M; Mahapatra RK
    J Microbiol Methods; 2014 Jun; 101():1-8. PubMed ID: 24685600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Completely sequenced genomes of pathogenic bacteria: a review.
    Guzmán E; Romeu A; Garcia-Vallve S
    Enferm Infecc Microbiol Clin; 2008 Feb; 26(2):88-98. PubMed ID: 18341921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of potential drug targets by subtractive genome analyses of methicillin resistant Staphylococcus aureus.
    Uddin R; Saeed K
    Comput Biol Chem; 2014 Feb; 48():55-63. PubMed ID: 24361957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of sequencing bacterial genomes for pathogenesis and vaccine development.
    Saunders NJ; Moxon ER
    Curr Opin Biotechnol; 1998 Dec; 9(6):618-23. PubMed ID: 9889135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.
    Uddin R; Sufian M
    PLoS One; 2016; 11(1):e0146796. PubMed ID: 26799565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome-wide screening and subtractive genomic approach revealed new virulence factors, potential drug targets against bio-war pathogen Brucella melitensis 16M.
    Pradeepkiran JA; Sainath SB; Kumar KK; Bhaskar M
    Drug Des Devel Ther; 2015; 9():1691-706. PubMed ID: 25834405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developing antibacterial vaccines in genomics and proteomics era.
    Kaushik DK; Sehgal D
    Scand J Immunol; 2008 Jun; 67(6):544-52. PubMed ID: 18397199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis.
    Hassan SS; Tiwari S; Guimarães LC; Jamal SB; Folador E; Sharma NB; de Castro Soares S; Almeida S; Ali A; Islam A; Póvoa FD; de Abreu VA; Jain N; Bhattacharya A; Juneja L; Miyoshi A; Silva A; Barh D; Turjanski A; Azevedo V; Ferreira RS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S3. PubMed ID: 25573232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial genomes and vaccine design: refinements to the classical reverse vaccinology approach.
    Mora M; Donati C; Medini D; Covacci A; Rappuoli R
    Curr Opin Microbiol; 2006 Oct; 9(5):532-6. PubMed ID: 16890009
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Birhanu BT; Lee SJ; Park NH; Song JB; Park SC
    J Vet Sci; 2018 Mar; 19(2):188-199. PubMed ID: 29032659
    [No Abstract]   [Full Text] [Related]  

  • 16. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method.
    Hadizadeh M; Tabatabaiepour SN; Tabatabaiepour SZ; Hosseini Nave H; Mohammadi M; Sohrabi SM
    Microb Drug Resist; 2018; 24(1):8-17. PubMed ID: 28520499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel target sites in bacteria for overcoming antibiotic resistance.
    Black MT; Hodgson J
    Adv Drug Deliv Rev; 2005 Jul; 57(10):1528-38. PubMed ID: 15949866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Virulent Hypothetical Proteins: The Potential Drug Target Involved in Bacterial Pathogenesis.
    Naveed M; Makhdoom SI; Abbas G; Safdari M; Farhadi A; Habtemariam S; Shabbir MA; Jabeen K; Asif MF; Tehreem S
    Mini Rev Med Chem; 2022; 22(20):2608-2623. PubMed ID: 35422211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial targets and antibiotics: genome-based drug discovery.
    Gray CP; Keck W
    Cell Mol Life Sci; 1999 Nov; 56(9-10):779-87. PubMed ID: 11212338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae.
    Jamal SB; Hassan SS; Tiwari S; Viana MV; Benevides LJ; Ullah A; Turjanski AG; Barh D; Ghosh P; Costa DA; Silva A; Röttger R; Baumbach J; Azevedo VAC
    PLoS One; 2017; 12(10):e0186401. PubMed ID: 29049350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.