These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26303507)

  • 41. Molecular dynamics simulations elucidate the mechanism of proton transport in the glutamate transporter EAAT3.
    Heinzelmann G; Kuyucak S
    Biophys J; 2014 Jun; 106(12):2675-83. PubMed ID: 24940785
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural ensemble of a glutamate transporter homologue in lipid nanodisc environment.
    Arkhipova V; Guskov A; Slotboom DJ
    Nat Commun; 2020 Feb; 11(1):998. PubMed ID: 32081874
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glutamate transporters combine transporter- and channel-like features.
    Slotboom DJ; Konings WN; Lolkema JS
    Trends Biochem Sci; 2001 Sep; 26(9):534-9. PubMed ID: 11551789
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New inhibitors for the neutral amino acid transporter ASCT2 reveal its Na+-dependent anion leak.
    Grewer C; Grabsch E
    J Physiol; 2004 Jun; 557(Pt 3):747-59. PubMed ID: 15107471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Vesicular glutamate transporters as anion channels?
    Takamori S
    Pflugers Arch; 2016 Mar; 468(3):513-8. PubMed ID: 26577586
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coupled ion binding and structural transitions along the transport cycle of glutamate transporters.
    Verdon G; Oh S; Serio RN; Boudker O
    Elife; 2014 May; 3():e02283. PubMed ID: 24842876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh.
    Lezon TR; Bahar I
    Biophys J; 2012 Mar; 102(6):1331-40. PubMed ID: 22455916
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Functional diversity of excitatory amino acid transporters: ion channel and transport modes.
    Fairman WA; Amara SG
    Am J Physiol; 1999 Oct; 277(4):F481-6. PubMed ID: 10516269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutations in transmembrane domains 5 and 7 of the human excitatory amino acid transporter 1 affect the substrate-activated anion channel.
    Huang S; Vandenberg RJ
    Biochemistry; 2007 Aug; 46(34):9685-92. PubMed ID: 17676873
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Na+ interactions with the neutral amino acid transporter ASCT1.
    Scopelliti AJ; Heinzelmann G; Kuyucak S; Ryan RM; Vandenberg RJ
    J Biol Chem; 2014 Jun; 289(25):17468-79. PubMed ID: 24808181
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Links between L-glutamate transporters, Na+/K+-ATPase and cytoskeleton in astrocytes: evidence following inhibition with rottlerin.
    Sheean RK; Lau CL; Shin YS; O'Shea RD; Beart PM
    Neuroscience; 2013 Dec; 254():335-46. PubMed ID: 24095695
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Binding and transport of [3H](2S,4R)- 4-methylglutamate, a new ligand for glutamate transporters, demonstrate labeling of EAAT1 in cultured murine astrocytes.
    Apricò K; Beart PM; Crawford D; O'Shea RD
    J Neurosci Res; 2004 Mar; 75(6):751-9. PubMed ID: 14994336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The SLC1 high-affinity glutamate and neutral amino acid transporter family.
    Kanai Y; Clémençon B; Simonin A; Leuenberger M; Lochner M; Weisstanner M; Hediger MA
    Mol Aspects Med; 2013; 34(2-3):108-20. PubMed ID: 23506861
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise analysis to study unitary properties of transporter-associated ion channels.
    Machtens JP; Fahlke C; Kovermann P
    Channels (Austin); 2011; 5(6):468-74. PubMed ID: 21849820
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The high-energy transition state of the glutamate transporter homologue GltPh.
    Huysmans GHM; Ciftci D; Wang X; Blanchard SC; Boudker O
    EMBO J; 2021 Jan; 40(1):e105415. PubMed ID: 33185289
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of the allosteric coupling mechanism in a glutamate transporter homolog via unnatural amino acid mutagenesis.
    Riederer EA; Valiyaveetil FI
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):15939-15946. PubMed ID: 31332002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water and urea permeation pathways of the human excitatory amino acid transporter EAAT1.
    Vandenberg RJ; Handford CA; Campbell EM; Ryan RM; Yool AJ
    Biochem J; 2011 Oct; 439(2):333-40. PubMed ID: 21732909
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance.
    Seal RP; Shigeri Y; Eliasof S; Leighton BH; Amara SG
    Proc Natl Acad Sci U S A; 2001 Dec; 98(26):15324-9. PubMed ID: 11752470
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of cellular synchronization in the vascular wall. Mechanisms of vasomotion.
    Matchkov VV
    Dan Med Bull; 2010 Oct; 57(10):B4191. PubMed ID: 21040688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.