BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

545 related articles for article (PubMed ID: 26303929)

  • 1. Improving activity recognition using a wearable barometric pressure sensor in mobility-impaired stroke patients.
    Massé F; Gonzenbach RR; Arami A; Paraschiv-Ionescu A; Luft AR; Aminian K
    J Neuroeng Rehabil; 2015 Aug; 12():72. PubMed ID: 26303929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Barometric Pressure Sensor to Improve Postural Transition Recognition of Mobility-Impaired Stroke Patients.
    Masse F; Gonzenbach R; Paraschiv-Ionescu A; Luft AR; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1210-1217. PubMed ID: 27046903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suitability of commercial barometric pressure sensors to distinguish sitting and standing activities for wearable monitoring.
    Massé F; Bourke AK; Chardonnens J; Paraschiv-Ionescu A; Aminian K
    Med Eng Phys; 2014 Jun; 36(6):739-44. PubMed ID: 24485500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly.
    Najafi B; Aminian K; Paraschiv-Ionescu A; Loew F; Büla CJ; Robert P
    IEEE Trans Biomed Eng; 2003 Jun; 50(6):711-23. PubMed ID: 12814238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrumented shoes for activity classification in the elderly.
    Moufawad el Achkar C; Lenoble-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Gait Posture; 2016 Feb; 44():12-7. PubMed ID: 27004626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of Sensor-Based Measurement of Clinically Relevant Motor Activities in Daily Life of Children With Mobility Impairments.
    Rast FM; Jucker F; Labruyère R
    Arch Phys Med Rehabil; 2024 Jan; 105(1):27-33. PubMed ID: 37329967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet based automated postural event detection and activity classification with single imu - biomed 2013.
    Lockhart TE; Soangra R; Zhang J; Wu X
    Biomed Sci Instrum; 2013; 49():224-33. PubMed ID: 23686204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postural transitions detection and characterization in healthy and patient populations using a single waist sensor.
    Atrsaei A; Dadashi F; Hansen C; Warmerdam E; Mariani B; Maetzler W; Aminian K
    J Neuroeng Rehabil; 2020 Jun; 17(1):70. PubMed ID: 32493496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postural Transitions during Activities of Daily Living Could Identify Frailty Status: Application of Wearable Technology to Identify Frailty during Unsupervised Condition.
    Parvaneh S; Mohler J; Toosizadeh N; Grewal GS; Najafi B
    Gerontology; 2017; 63(5):479-487. PubMed ID: 28285311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sit-stand and stand-sit transitions in older adults and patients with Parkinson's disease: event detection based on motion sensors versus force plates.
    Zijlstra A; Mancini M; Lindemann U; Chiari L; Zijlstra W
    J Neuroeng Rehabil; 2012 Oct; 9():75. PubMed ID: 23039219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yoga Posture Recognition and Quantitative Evaluation with Wearable Sensors Based on Two-Stage Classifier and Prior Bayesian Network.
    Wu Z; Zhang J; Chen K; Fu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a Smartphone-based Human Activity Recognition System in a Daily Living Environment.
    Lemaire ED; Tundo MD; Baddour N
    J Vis Exp; 2015 Dec; (106):e53004. PubMed ID: 26710275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ambulatory monitoring of physical activities in patients with Parkinson's disease.
    Salarian A; Russmann H; Vingerhoets FJ; Burkhard PR; Aminian K
    IEEE Trans Biomed Eng; 2007 Dec; 54(12):2296-9. PubMed ID: 18075046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auto detection and segmentation of physical activities during a Timed-Up-and-Go (TUG) task in healthy older adults using multiple inertial sensors.
    Nguyen HP; Ayachi F; Lavigne-Pelletier C; Blamoutier M; Rahimi F; Boissy P; Jog M; Duval C
    J Neuroeng Rehabil; 2015 Apr; 12():36. PubMed ID: 25885438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ambulatory activity classification with dendogram-based support vector machine: Application in lower-limb active exoskeleton.
    Mazumder O; Kundu AS; Lenka PK; Bhaumik S
    Gait Posture; 2016 Oct; 50():53-59. PubMed ID: 27585182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infant trunk posture and arm movement assessment using pressure mattress, inertial and magnetic measurement units (IMUs).
    Rihar A; Mihelj M; Pašič J; Kolar J; Munih M
    J Neuroeng Rehabil; 2014 Sep; 11():133. PubMed ID: 25194825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of sit-to-stand and stand-to-sit transitions using a single inertial sensor.
    Rodríguez-Martín D; Samà A; Pérez-López C; Català A
    Stud Health Technol Inform; 2012; 177():113-7. PubMed ID: 22942040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol of a systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    Syst Rev; 2018 Oct; 7(1):174. PubMed ID: 30355320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.