BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

544 related articles for article (PubMed ID: 26303929)

  • 21. Quantitative description of the lie-to-sit-to-stand-to-walk transfer by a single body-fixed sensor.
    Bagalà F; Klenk J; Cappello A; Chiari L; Becker C; Lindemann U
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):624-33. PubMed ID: 23221832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automation of Functional Mobility Assessments at Home Using a Multimodal Sensor System Integrating Inertial Measurement Units and Computer Vision (IMU-Vision).
    Spangler J; Mitjans M; Collimore A; Gomes-Pires A; Levine DM; Tron R; Awad LN
    Phys Ther; 2024 Feb; 104(2):. PubMed ID: 38159106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Systematic review on the application of wearable inertial sensors to quantify everyday life motor activity in people with mobility impairments.
    Rast FM; Labruyère R
    J Neuroeng Rehabil; 2020 Nov; 17(1):148. PubMed ID: 33148315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants.
    Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H
    J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using decision trees to measure activities in people with stroke.
    Zhang T; Fulk GD; Tang W; Sazonov ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6337-40. PubMed ID: 24111190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms.
    Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L
    J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Classification of Horse Gaits Using FCM-Based Neuro-Fuzzy Classifier from the Transformed Data Information of Inertial Sensor.
    Lee JN; Lee MW; Byeon YH; Lee WS; Kwak KC
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection and classification of postural transitions in real-world conditions.
    Ganea R; Paraschiv-lonescu A; Aminian K
    IEEE Trans Neural Syst Rehabil Eng; 2012 Sep; 20(5):688-96. PubMed ID: 22692942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantifying sit-to-stand and stand-to-sit transitions in free-living environments using the activPAL thigh-worn activity monitor.
    Pickford CG; Findlow AH; Kerr A; Banger M; Clarke-Cornwell AM; Hollands KL; Quinn T; Granat MH
    Gait Posture; 2019 Sep; 73():140-146. PubMed ID: 31325738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A description of an accelerometer-based mobility monitoring technique.
    Lyons GM; Culhane KM; Hilton D; Grace PA; Lyons D
    Med Eng Phys; 2005 Jul; 27(6):497-504. PubMed ID: 15990066
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using sensors to measure activity in people with stroke.
    Fulk GD; Sazonov E
    Top Stroke Rehabil; 2011; 18(6):746-57. PubMed ID: 22436312
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture.
    Grasso R; Zago M; Lacquaniti F
    J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of gait and posture classification using movement sensors in individuals with mobility impairment after stroke.
    Pohl J; Ryser A; Veerbeek JM; Verheyden G; Vogt JE; Luft AR; Easthope CA
    Front Physiol; 2022; 13():933987. PubMed ID: 36225292
    [No Abstract]   [Full Text] [Related]  

  • 36. Automated stand-up and sit-down detection for robot-assisted body-weight support training with the FLOAT.
    Bannwart M; Emst D; Easthope C; Bolliger M; Rauter G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():412-417. PubMed ID: 28813854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ambulatory monitoring of human posture and walking speed using wearable accelerometer sensors.
    Yeoh WS; Pek I; Yong YH; Chen X; Waluyo AB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5184-7. PubMed ID: 19163885
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of daily postures and walking modalities using a single chest-mounted tri-axial accelerometer.
    Nazarahari M; Rouhani H
    Med Eng Phys; 2018 Jul; 57():75-81. PubMed ID: 29691130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Automatic recognition of postures and activities in stroke patients.
    Sazonov ES; Fulk G; Sazonova N; Schuckers S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2200-3. PubMed ID: 19965152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Validation of a body-worn accelerometer to measure activity patterns in octogenarians.
    Taylor LM; Klenk J; Maney AJ; Kerse N; Macdonald BM; Maddison R
    Arch Phys Med Rehabil; 2014 May; 95(5):930-4. PubMed ID: 24486241
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.