BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26304319)

  • 1. Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions.
    Zhang J; Bing L; Reineccius GA
    Food Chem; 2016 Feb; 192():53-9. PubMed ID: 26304319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physical Stability, Autoxidation, and Photosensitized Oxidation of ω-3 Oils in Nanoemulsions Prepared with Natural and Synthetic Surfactants.
    Uluata S; McClements DJ; Decker EA
    J Agric Food Chem; 2015 Oct; 63(42):9333-40. PubMed ID: 26452408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formulation and physicochemical stability of oil-in-water nanoemulsion loaded with α-terpineol as flavor oil using Quillaja saponins as natural emulsifier.
    de Oliveira Felipe L; Lemos Bicas J; Bouhoute M; Vodo S; Taarji N; Nakajima M; Neves MA
    Food Res Int; 2022 Mar; 153():110894. PubMed ID: 35227489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of biopolymer emulsifier type on formation and stability of rice bran oil-in-water emulsions: whey protein, gum arabic, and modified starch.
    Charoen R; Jangchud A; Jangchud K; Harnsilawat T; Naivikul O; McClements DJ
    J Food Sci; 2011; 76(1):E165-72. PubMed ID: 21535669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: Use of individual and mixed natural emulsifiers (saponin and lecithin).
    Luo X; Zhou Y; Bai L; Liu F; Zhang R; Zhang Z; Zheng B; Deng Y; McClements DJ
    Food Res Int; 2017 Jun; 96():103-112. PubMed ID: 28528089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of β-carotene nanoemulsion-based delivery systems using dual-channel microfluidization: Physical and chemical stability.
    Luo X; Zhou Y; Bai L; Liu F; Deng Y; McClements DJ
    J Colloid Interface Sci; 2017 Mar; 490():328-335. PubMed ID: 27914331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stability of emulsions stabilized by Quillaja saponin-egg lecithin mixtures.
    Salminen H; Bischoff S; Weiss J
    J Food Sci; 2020 Apr; 85(4):1213-1222. PubMed ID: 32249411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formulation and Optimization of Nanoemulsions Using the Natural Surfactant Saponin from
    Schreiner TB; Santamaria-Echart A; Ribeiro A; Peres AM; Dias MM; Pinho SP; Barreiro MF
    Molecules; 2020 Mar; 25(7):. PubMed ID: 32230976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids.
    Li Z; Dai L; Wang D; Mao L; Gao Y
    J Agric Food Chem; 2018 Apr; 66(15):3922-3929. PubMed ID: 29595971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emulsification efficacy of Quillaja saponins at very low concentration: Model development and role of alcohols.
    Schober A; Zhang J; Subramaniam A; Normand V
    Colloids Surf B Biointerfaces; 2017 Nov; 159():829-837. PubMed ID: 28888200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80.
    Zhu Z; Wen Y; Yi J; Cao Y; Liu F; McClements DJ
    J Colloid Interface Sci; 2019 Feb; 536():80-87. PubMed ID: 30359887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch.
    Abbas S; Bashari M; Akhtar W; Li WW; Zhang X
    Ultrason Sonochem; 2014 Jul; 21(4):1265-74. PubMed ID: 24439913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of thymol nanoemulsions stabilized using Quillaja Saponin as a biosurfactant: Antioxidant activity enhancement.
    Sedaghat Doost A; Van Camp J; Dewettinck K; Van der Meeren P
    Food Chem; 2019 Sep; 293():134-143. PubMed ID: 31151593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets.
    Chen XW; Yang DX; Zou Y; Yang XQ
    Food Res Int; 2017 Sep; 99(Pt 1):679-687. PubMed ID: 28784531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Orange Oil Powders and Oleogels Fabricated from Emulsion Templates Stabilized Solely by a Natural Triterpene Saponin.
    Chen XW; Yang XQ
    J Agric Food Chem; 2019 Mar; 67(9):2637-2646. PubMed ID: 30721052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Ostwald ripening in model beverage emulsions by addition of poorly water soluble triglyceride oils.
    McClements DJ; Henson L; Popplewell LM; Decker EA; Choi SJ
    J Food Sci; 2012 Jan; 77(1):C33-8. PubMed ID: 22133014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formulation and stabilization of oil-in-water nanoemulsions using a saponins-rich extract from argan oil press-cake.
    Taarji N; Rabelo da Silva CA; Khalid N; Gadhi C; Hafidi A; Kobayashi I; Neves MA; Isoda H; Nakajima M
    Food Chem; 2018 Apr; 246():457-463. PubMed ID: 29291873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical high internal phase emulsions and transparent oleogels stabilized by quillaja saponin-coated nanodroplets for color performance.
    Chen XW; Wang JM; Guo J; Wan ZL; Yin SW; Yang XQ
    Food Funct; 2017 Feb; 8(2):823-831. PubMed ID: 28124036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.