BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26304320)

  • 1. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil.
    Zhang L; Shuai Q; Li P; Zhang Q; Ma F; Zhang W; Ding X
    Food Chem; 2016 Feb; 192():60-6. PubMed ID: 26304320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adulteration detection of essence in sesame oil based on headspace gas chromatography-ion mobility spectrometry.
    Dou X; Zhang L; Yang R; Wang X; Yu L; Yue X; Ma F; Mao J; Wang X; Li P
    Food Chem; 2022 Feb; 370():131373. PubMed ID: 34788966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and quantification of adulteration of sesame oils with vegetable oils using gas chromatography and multivariate data analysis.
    Peng D; Bi Y; Ren X; Yang G; Sun S; Wang X
    Food Chem; 2015 Dec; 188():415-21. PubMed ID: 26041212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Authentication and adulteration analysis of sesame oil by FTIR spectroscopy].
    Ding QZ; Liu LL; Wu YW; Li BN; Ouyang J
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Oct; 34(10):2690-5. PubMed ID: 25739209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification and adulteration detection of vegetable oils based on fatty acid profiles.
    Zhang L; Li P; Sun X; Wang X; Xu B; Wang X; Ma F; Zhang Q; Ding X
    J Agric Food Chem; 2014 Aug; 62(34):8745-51. PubMed ID: 25078260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the adulteration of sesame oil products by portable Raman spectrometer and 1D CNN vector regression: A comparative study with chemometrics and colorimetry.
    Teng Y; Chen Y; Chen X; Zuo S; Li X; Pan Z; Shao K; Du J; Li Z
    Food Chem; 2024 Mar; 436():137694. PubMed ID: 37844509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid detection of sesame oil multiple adulteration using a portable Raman spectrometer.
    Li X; Wang D; Ma F; Yu L; Mao J; Zhang W; Jiang J; Zhang L; Li P
    Food Chem; 2023 Mar; 405(Pt B):134884. PubMed ID: 36435121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic Fingerprints: VOC Analysis with E-Nose and GC-MS for Rapid Detection of Adulteration in Sesame Oil.
    Aghili NS; Rasekh M; Karami H; Edriss O; Wilson AD; Ramos J
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and quantification of counterfeit sesame oil by 3D fluorescence spectroscopy and convolutional neural network.
    Wu X; Zhao Z; Tian R; Shang Z; Liu H
    Food Chem; 2020 May; 311():125882. PubMed ID: 31767482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different classification methods for analyzing electronic nose data to characterize sesame oils and blends.
    Shao X; Li H; Wang N; Zhang Q
    Sensors (Basel); 2015 Oct; 15(10):26726-42. PubMed ID: 26506350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.
    Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectance Spectroscopy with Multivariate Methods for Non-Destructive Discrimination of Edible Oil Adulteration.
    Su N; Weng S; Wang L; Xu T
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil.
    Alves JO; Botelho BG; Sena MM; Augusti R
    J Mass Spectrom; 2013 Oct; 48(10):1109-15. PubMed ID: 24130014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of total synchronous fluorescence spectroscopy combined with pre-trained convolutional neural network in the identification and quantification of vegetable oil.
    Wu X; Zhao Z; Tian R; Gao S; Niu Y; Liu H
    Food Chem; 2021 Jan; 335():127640. PubMed ID: 32738536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durbin-Watson partial least-squares regression applied to MIR data on adulteration with edible oils of different origins.
    Jović O
    Food Chem; 2016 Dec; 213():791-798. PubMed ID: 27451249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics.
    Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ
    Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A methodological approach to preprocessing FTIR spectra of adulterated sesame oil.
    Khodabakhshian R; Seyedalibeyk Lavasani H; Weller P
    Food Chem; 2023 Sep; 419():136055. PubMed ID: 37027973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geographical discrimination and adulteration analysis for edible oils using two-dimensional correlation spectroscopy and convolutional neural networks (CNNs).
    Liu Y; Yao L; Xia Z; Gao Y; Gong Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118973. PubMed ID: 33017793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment and evaluation of multiple adulteration detection of camellia oil by mixture design.
    Dou X; Zhang L; Chen Z; Wang X; Ma F; Yu L; Mao J; Li P
    Food Chem; 2023 Apr; 406():135050. PubMed ID: 36462349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Determination of eight vitamin E in vegetable oils by gas chromatography-mass spectrometry and its application on authentication of sesame oil].
    Shen W; Wang H; Lu H; Yu K; Hu G; Wei X; Wu B
    Se Pu; 2020 May; 38(5):595-599. PubMed ID: 34213245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.