These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26304591)

  • 1. Compressional rheology: A tool for understanding compressibility effects in sludge dewatering.
    Stickland AD
    Water Res; 2015 Oct; 82():37-46. PubMed ID: 26304591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity drainage of activated sludge: new experimental method and considerations of settling velocity, specific cake resistance and cake compressibility.
    Dominiak D; Christensen M; Keiding K; Nielsen PH
    Water Res; 2011 Feb; 45(5):1941-50. PubMed ID: 21239036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the compressional rheology of fresh faeces: Evidence for improving community scale sanitation through localised dewatering.
    Mercer E; Usher SP; McAdam EJ; Stoner B; Bajón-Fernández Y
    Water Res; 2021 Oct; 204():117526. PubMed ID: 34461495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the dewatering of selected inorganic sludges.
    Harbour PJ; Aziz AA; Scales PJ; Dixon DR
    Water Sci Technol; 2001; 44(10):191-6. PubMed ID: 11794653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignite aided dewatering of digested sewage sludge.
    Thapa KB; Qi Y; Clayton SA; Hoadley AF
    Water Res; 2009 Feb; 43(3):623-34. PubMed ID: 19058831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical characterisation of the sludge produced in a sequencing batch biofilter granular reactor.
    Lotito AM; Di Iaconi C; Lotito V
    Water Res; 2012 Oct; 46(16):5316-26. PubMed ID: 22819872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation technologies for sludge dewatering.
    Wakeman RJ
    J Hazard Mater; 2007 Jun; 144(3):614-9. PubMed ID: 17349743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling filtration time initial dependencies of wastewater sludges.
    Stickland AD; Harbour PJ; Dixon DR; Scales PJ
    Water Res; 2007 Jan; 41(1):206-16. PubMed ID: 17049368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rheological measurement used as a tool to assess sludges settleability].
    Guibaud G; Dollet P; Tixier N; Dagot C; Baudu M
    Environ Technol; 2004 Jun; 25(6):723-31. PubMed ID: 15369292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dewatering in biological wastewater treatment: A review.
    Christensen ML; Keiding K; Nielsen PH; Jørgensen MK
    Water Res; 2015 Oct; 82():14-24. PubMed ID: 25959073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.
    Dustan AC; Cohen B; Petrie JG
    Adv Colloid Interface Sci; 2005 May; 113(2-3):85-97. PubMed ID: 15935140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2011 Apr; 45(9):2795-810. PubMed ID: 21453949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.
    Mahmoud A; Olivier J; Vaxelaire J; Hoadley AF
    Water Res; 2010 Apr; 44(8):2381-407. PubMed ID: 20303137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of a full-scale dewatering operation based on the rheological characteristics of wastewater sludge.
    Ormeci B
    Water Res; 2007 Mar; 41(6):1243-52. PubMed ID: 17303208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression and swelling of activated sludge cakes during dewatering.
    Sveegaard SG; Keiding K; Christensen ML
    Water Res; 2012 Oct; 46(16):4999-5008. PubMed ID: 22819870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant.
    Kjellerup BV; Keiding K; Nielsen PH
    Water Sci Technol; 2001; 44(2-3):155-62. PubMed ID: 11547978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pilot study of a fluidized-pellet-bed technique for simultaneous solid/liquid separation and sludge thickening in a sewage treatment plant.
    Wang XC; Jin PK; Yuan HL; Wang ER; Tambo N
    Water Sci Technol; 2004; 49(10):81-8. PubMed ID: 15259941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in maximal settling capacity in an activated sludge treatment plant with highly loaded secondary settlers.
    Wilén BM; Lumley D; Nordqvist A
    Water Sci Technol; 2004; 50(7):187-94. PubMed ID: 15553475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of compactibility in liquid-solid separation of wastewater sludges.
    Emir E; Erdincler A
    Water Sci Technol; 2006; 53(7):121-6. PubMed ID: 16752772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.