BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26304758)

  • 1. Segmental distribution of the motor neuron columns that supply the rat hindlimb: A muscle/motor neuron tract-tracing analysis targeting the motor end plates.
    Mohan R; Tosolini AP; Morris R
    Neuroscience; 2015 Oct; 307():98-108. PubMed ID: 26304758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the motor end plates in the mouse hindlimb gives access to a greater number of spinal cord motor neurons: an approach to maximize retrograde transport.
    Mohan R; Tosolini AP; Morris R
    Neuroscience; 2014 Aug; 274():318-30. PubMed ID: 24892760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial characterization of the motor neuron columns supplying the rat forelimb.
    Tosolini AP; Morris R
    Neuroscience; 2012 Jan; 200():19-30. PubMed ID: 22100785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting the full length of the motor end plate regions in the mouse forelimb increases the uptake of fluoro-gold into corresponding spinal cord motor neurons.
    Tosolini AP; Mohan R; Morris R
    Front Neurol; 2013; 4():58. PubMed ID: 23730296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motor neuron columns in the lumbar spinal cord of the rat.
    Nicolopoulos-Stournaras S; Iles JF
    J Comp Neurol; 1983 Jun; 217(1):75-85. PubMed ID: 6875053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating level-dependent models of cervical and thoracic spinal cord injury: Exploring the interplay of neuroanatomy, physiology, and function.
    Wilcox JT; Satkunendrarajah K; Nasirzadeh Y; Laliberte AM; Lip A; Cadotte DW; Foltz WD; Fehlings MG
    Neurobiol Dis; 2017 Sep; 105():194-212. PubMed ID: 28578003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor deficits and adaptive mechanisms after thoracic spinal cord contusion in the adult rat.
    Collazos-Castro JE; López-Dolado E; Nieto-Sampedro M
    J Neurotrauma; 2006 Jan; 23(1):1-17. PubMed ID: 16430369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient reinnervation of hindlimb muscles by thoracic motor neurons after nerve cross-anastomosis in rats.
    Liu S; Damhieu P; Devanze P; Saïd G; Heard JM; Tadié M
    J Neurosurg; 2003 Nov; 99(5):879-85. PubMed ID: 14609168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musculotopic organization of the motor neurons supplying the mouse hindlimb muscles: a quantitative study using Fluoro-Gold retrograde tracing.
    Bácskai T; Rusznák Z; Paxinos G; Watson C
    Brain Struct Funct; 2014 Jan; 219(1):303-21. PubMed ID: 23288256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral and histological characterization of unilateral cervical spinal cord contusion injury in rats.
    Gensel JC; Tovar CA; Hamers FP; Deibert RJ; Beattie MS; Bresnahan JC
    J Neurotrauma; 2006 Jan; 23(1):36-54. PubMed ID: 16430371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intramuscular Injections Along the Motor End Plates: A Minimally Invasive Approach to Shuttle Tracers Directly into Motor Neurons.
    Mohan R; Tosolini AP; Morris R
    J Vis Exp; 2015 Jul; (101):e52846. PubMed ID: 26273739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red nucleus projections to distinct motor neuron pools in the rat spinal cord.
    Küchler M; Fouad K; Weinmann O; Schwab ME; Raineteau O
    J Comp Neurol; 2002 Jul; 448(4):349-59. PubMed ID: 12115698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innervation and properties of the rat FDSBQ muscle: an animal model to evaluate voluntary muscle strength after incomplete spinal cord injury.
    Thomas CK; Esipenko V; Xu XM; Madsen PW; Gordon T
    Exp Neurol; 1999 Aug; 158(2):279-89. PubMed ID: 10415136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motoneuron loss associated with chronic locomotion impairments after spinal cord contusion in the rat.
    Collazos-Castro JE; Soto VM; Gutiérrez-Dávila M; Nieto-Sampedro M
    J Neurotrauma; 2005 May; 22(5):544-58. PubMed ID: 15892600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcitonin gene-related peptide is increased in hindlimb motoneurons after exercise.
    Homonko DA; Theriault E
    Int J Sports Med; 1997 Oct; 18(7):503-9. PubMed ID: 9414072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nano PGE1 promoted the recovery from spinal cord injury-induced motor dysfunction through its accumulation and sustained release.
    Takenaga M; Ishihara T; Ohta Y; Tokura Y; Hamaguchi A; Igarashi R; Mizushima T
    J Control Release; 2010 Dec; 148(2):249-54. PubMed ID: 20709122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.
    Filli L; Zörner B; Weinmann O; Schwab ME
    Brain; 2011 Aug; 134(Pt 8):2261-73. PubMed ID: 21752788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.
    Grasso R; Ivanenko YP; Zago M; Molinari M; Scivoletto G; Castellano V; Macellari V; Lacquaniti F
    Brain; 2004 May; 127(Pt 5):1019-34. PubMed ID: 14988161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musculotopic organization of the motor neurons supplying forelimb and shoulder girdle muscles in the mouse.
    Bácskai T; Fu Y; Sengul G; Rusznák Z; Paxinos G; Watson C
    Brain Struct Funct; 2013 Jan; 218(1):221-38. PubMed ID: 22362202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.