These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 26304817)

  • 1. Control of Dzyaloshinskii-Moriya interaction in Mn(1-x)Fe(x)Ge: a first-principles study.
    Koretsune T; Nagaosa N; Arita R
    Sci Rep; 2015 Aug; 5():13302. PubMed ID: 26304817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dzyaloshinskii-Moriya Interaction as a Consequence of a Doppler Shift due to Spin-Orbit-Induced Intrinsic Spin Current.
    Kikuchi T; Koretsune T; Arita R; Tatara G
    Phys Rev Lett; 2016 Jun; 116(24):247201. PubMed ID: 27367402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dzyaloshinskii-Moriya Interaction and Hall Effects in the Skyrmion Phase of Mn(1-x) Fe(x)Ge.
    Gayles J; Freimuth F; Schena T; Lani G; Mavropoulos P; Duine RA; Blügel S; Sinova J; Mokrousov Y
    Phys Rev Lett; 2015 Jul; 115(3):036602. PubMed ID: 26230813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling.
    Shibata K; Yu XZ; Hara T; Morikawa D; Kanazawa N; Kimoto K; Ishiwata S; Matsui Y; Tokura Y
    Nat Nanotechnol; 2013 Oct; 8(10):723-8. PubMed ID: 24013133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions.
    Díaz SA; Troncoso RE
    J Phys Condens Matter; 2016 Oct; 28(42):426005. PubMed ID: 27588612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large anisotropic deformation of skyrmions in strained crystal.
    Shibata K; Iwasaki J; Kanazawa N; Aizawa S; Tanigaki T; Shirai M; Nakajima T; Kubota M; Kawasaki M; Park HS; Shindo D; Nagaosa N; Tokura Y
    Nat Nanotechnol; 2015 Jul; 10(7):589-92. PubMed ID: 26030654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets.
    Qaiumzadeh A; Ado IA; Duine RA; Titov M; Brataas A
    Phys Rev Lett; 2018 May; 120(19):197202. PubMed ID: 29799247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Dzyaloshinskii-Moriya interaction in metals.
    Hu CD
    J Phys Condens Matter; 2012 Feb; 24(8):086001. PubMed ID: 22277667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of skyrmions in bilayer systems.
    Koshibae W; Nagaosa N
    Sci Rep; 2017 Feb; 7():42645. PubMed ID: 28198436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band Filling Control of the Dzyaloshinskii-Moriya Interaction in Weakly Ferromagnetic Insulators.
    Beutier G; Collins SP; Dimitrova OV; Dmitrienko VE; Katsnelson MI; Kvashnin YO; Lichtenstein AI; Mazurenko VV; Nisbet AGA; Ovchinnikova EN; Pincini D
    Phys Rev Lett; 2017 Oct; 119(16):167201. PubMed ID: 29099209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Square skyrmion crystal in centrosymmetric systems with locally inversion-asymmetric layers.
    Hayami S
    J Phys Condens Matter; 2022 Jul; 34(36):. PubMed ID: 35738246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skyrmions in Magnetic Tunnel Junctions.
    Zhang X; Cai W; Zhang X; Wang Z; Li Z; Zhang Y; Cao K; Lei N; Kang W; Zhang Y; Yu H; Zhou Y; Zhao W
    ACS Appl Mater Interfaces; 2018 May; 10(19):16887-16892. PubMed ID: 29682962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable interfacial Dzyaloshinskii-Moriya interaction in symmetrical Au/[Fe/Au]
    Zhang W; Chen R; Jiang B; Zhao X; Zhao W; Yan SS; Han G; Yu S; Liu G; Kang S
    Nanoscale; 2021 Feb; 13(4):2665-2672. PubMed ID: 33496295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering skyrmions in transition-metal multilayers for spintronics.
    Dupé B; Bihlmayer G; Böttcher M; Blügel S; Heinze S
    Nat Commun; 2016 Jun; 7():11779. PubMed ID: 27257020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Field Bi-Skyrmion Formation in a Noncentrosymmetric Chimney Ladder Ferromagnet.
    Takagi R; Yu XZ; White JS; Shibata K; Kaneko Y; Tatara G; Rønnow HM; Tokura Y; Seki S
    Phys Rev Lett; 2018 Jan; 120(3):037203. PubMed ID: 29400522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Weak antiferromagnetic ordering induced by Dzyaloshinskii-Moriya interaction and pure magnetic reflections in MnSi-type crystals.
    Dmitrienko VE; Chizhikov VA
    Phys Rev Lett; 2012 May; 108(18):187203. PubMed ID: 22681111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noncollinear magnetism of Mn nanowires on Fe(1 1 0).
    Igarashi RN; Miranda IP; Eleno LT; Klautau AB; Petrilli HM
    J Phys Condens Matter; 2016 Aug; 28(32):326001. PubMed ID: 27346457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anatomy of Dzyaloshinskii-Moriya Interaction at Co/Pt Interfaces.
    Yang H; Thiaville A; Rohart S; Fert A; Chshiev M
    Phys Rev Lett; 2015 Dec; 115(26):267210. PubMed ID: 26765026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure, magnetic anisotropy and Dzyaloshinskii-Moriya interaction in Janus Cr
    Zhang F; Zhang H; Mi W; Wang X
    Phys Chem Chem Phys; 2020 Apr; 22(16):8647-8657. PubMed ID: 32270829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chiral properties of structure and magnetism in Mn(1-x)Fe(x)Ge compounds: when the left and the right are fighting, who wins?
    Grigoriev SV; Potapova NM; Siegfried SA; Dyadkin VA; Moskvin EV; Dmitriev V; Menzel D; Dewhurst CD; Chernyshov D; Sadykov RA; Fomicheva LN; Tsvyashchenko AV
    Phys Rev Lett; 2013 May; 110(20):207201. PubMed ID: 25167442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.