BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26305149)

  • 1. Controlled transport of captive bubbles on plastrons.
    Huynh SH; Lau CY; Cheong BH; Muradoglu M; Liew OW; Ng TW
    Soft Matter; 2015 Oct; 11(38):7474-7. PubMed ID: 26305149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bubble dispenser in microfluidic devices.
    Cubaud T; Tatineni M; Zhong X; Ho CM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037302. PubMed ID: 16241625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
    Choi M; Na Y; Kim SJ
    Electrophoresis; 2015 Dec; 36(23):2896-901. PubMed ID: 26382942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control.
    Draper MC; Crick CR; Orlickaite V; Turek VA; Parkin IP; Edel JB
    Anal Chem; 2013 Jun; 85(11):5405-10. PubMed ID: 23627493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.
    Li J; Wang Y; Chen H; Wan J
    Lab Chip; 2014 Nov; 14(22):4334-7. PubMed ID: 25236507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water slippage versus contact angle: a quasiuniversal relationship.
    Huang DM; Sendner C; Horinek D; Netz RR; Bocquet L
    Phys Rev Lett; 2008 Nov; 101(22):226101. PubMed ID: 19113490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinspired gas bubble spontaneous and directional transportation effects in an aqueous medium.
    Ma R; Wang J; Yang Z; Liu M; Zhang J; Jiang L
    Adv Mater; 2015 Apr; 27(14):2384-9. PubMed ID: 25688855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanobubbles and their role in slip and drag.
    Maali A; Bhushan B
    J Phys Condens Matter; 2013 May; 25(18):184003. PubMed ID: 23598711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-grained modelling of surface nanobubbles.
    Grosfils P
    J Phys Condens Matter; 2013 May; 25(18):184006. PubMed ID: 23598798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygenation by a superhydrophobic slip G/L contactor.
    Karatay E; Lammertink RG
    Lab Chip; 2012 Aug; 12(16):2922-9. PubMed ID: 22722560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired superhydrophobic carbonaceous hairy microstructures with strong water adhesion and high gas retaining capability.
    Zhao Y; Qin M; Wang A; Kim D
    Adv Mater; 2013 Sep; 25(33):4561-5. PubMed ID: 23813481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-bubble dynamics in pool boiling of one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063002. PubMed ID: 25019874
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bubble-based microfluidic gas sensor for gas chromatographs.
    Bulbul A; Kim H
    Lab Chip; 2015 Jan; 15(1):94-104. PubMed ID: 25350655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled effect of ultrasonic cavitation on hydrophobic/hydrophilic surfaces.
    Belova V; Gorin DA; Shchukin DG; Möhwald H
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):417-25. PubMed ID: 21280665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrodynamic boundary condition of water on hydrophobic surfaces.
    Schaeffel D; Yordanov S; Schmelzeisen M; Yamamoto T; Kappl M; Schmitz R; Dünweg B; Butt HJ; Koynov K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):051001. PubMed ID: 23767478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.