These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 26305154)

  • 1. Flexible High-Energy Polymer-Electrolyte-Based Rechargeable Zinc-Air Batteries.
    Fu J; Lee DU; Hassan FM; Yang L; Bai Z; Park MG; Chen Z
    Adv Mater; 2015 Oct; 27(37):5617-22. PubMed ID: 26305154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Overview and Future Perspectives of Rechargeable Flexible Zn-Air Batteries.
    Bai L; Wang D; Wang W; Yan W
    ChemSusChem; 2024 Mar; ():e202400080. PubMed ID: 38533691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design enhancement in hydroxide ion conductivity of viologen-bakelite organic frameworks for a flexible rechargeable zinc-air battery.
    Rase D; Manna N; Kushwaha R; Jain C; Singh HD; Shekhar P; Singh P; Singh YK; Vaidhyanathan R
    Chem Sci; 2024 May; 15(18):6949-6957. PubMed ID: 38725505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Zinc-Air Batteries: Advances, Challenges, and Prospects.
    Lv XW; Wang Z; Lai Z; Liu Y; Ma T; Geng J; Yuan ZY
    Small; 2024 Jan; 20(4):e2306396. PubMed ID: 37712176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer design for solid-state batteries and wearable electronics.
    Stakem KG; Leslie FJ; Gregory GL
    Chem Sci; 2024 Jul; 15(27):10281-10307. PubMed ID: 38994435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward Flexible and Wearable Zn-Air Batteries from Cotton Textile Waste.
    Huang X; Liu J; Ding J; Deng Y; Hu W; Zhong C
    ACS Omega; 2019 Nov; 4(21):19341-19349. PubMed ID: 31763558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Seaweed Structure" design for solid gel electrolyte with hydroxide ion conductivity enabling flexible zinc air batteries.
    Xu T; Li M; Luo Z; Ye L; Tong Y; Zhang J; Hu E; Chen Z
    J Colloid Interface Sci; 2024 Jul; 675():883-892. PubMed ID: 39002238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles.
    Lorca S; Santos F; Fernández Romero AJ
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33260984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Failure Mechanism, Electrolyte Design, and Electrolyte/Electrode Interface Regulation for Low-Temperature Zinc-Based Batteries.
    Zhang W; Dong Q; Wang J; Han X; Hu W
    Small Methods; 2023 Oct; 7(10):e2300324. PubMed ID: 37357167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Hemoglobin-Based Zinc-Air Battery in a Neutral Electrolyte.
    García-Caballero V; Lorca S; Villa-Moreno M; Caballero Á; Giner-Casares JJ; Fernández-Romero AJ; Cano M
    Energy Fuels; 2023 Dec; 37(23):18210-18215. PubMed ID: 38094906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Review of Rechargeable Zinc-Air Batteries: Recent Progress and Future Perspectives.
    Nazir G; Rehman A; Lee JH; Kim CH; Gautam J; Heo K; Hussain S; Ikram M; AlObaid AA; Lee SY; Park SJ
    Nanomicro Lett; 2024 Feb; 16(1):138. PubMed ID: 38421464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Green Energy Storage: Chitosan-Avocado Starch Hydrogels for a Novel Generation of Zinc Battery Electrolytes.
    Cruz-Balaz MI; Bósquez-Cáceres MF; Delgado AD; Arjona N; Morera Córdova V; Álvarez-Contreras L; Tafur JP
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Minireview of the Solid-State Electrolytes for Zinc Batteries.
    Yao W; Zheng Z; Zhou J; Liu D; Song J; Zhu Y
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High energy storage capabilities of CaCu
    Bhardwaj U; Sharma A; Gupta V; Batoo KM; Hussain S; Kushwaha HS
    Sci Rep; 2022 Mar; 12(1):3999. PubMed ID: 35256700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Weavable and Scalable Cotton-Yarn-Based Battery Activated by Human Sweat for Textile Electronics.
    Xiao G; Ju J; Lu H; Shi X; Wang X; Wang W; Xia Q; Zhou G; Sun W; Li CM; Qiao Y; Lu Z
    Adv Sci (Weinh); 2022 Mar; 9(7):e2103822. PubMed ID: 34989163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Binary Fe-Co Nanocluster Supported on Defective Tungsten Oxide as Efficient Oxygen Reduction Electrocatalyst in Zinc-Air Battery.
    Han Q; Zhao X; Luo Y; Wu L; Sun S; Li J; Wang Y; Liu G; Chen Z
    Adv Sci (Weinh); 2022 Feb; 9(4):e2104237. PubMed ID: 34850599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotubes for flexible batteries: recent progress and future perspective.
    Zhu S; Sheng J; Chen Y; Ni J; Li Y
    Natl Sci Rev; 2021 May; 8(5):nwaa261. PubMed ID: 34691641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corrosion Resistance of the CpTi G2 Cellular Lattice with TPMS Architecture for Gas Diffusion Electrodes.
    Łosiewicz B; Maszybrocka J; Kubisztal J; Skrabalak G; Stwora A
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33375270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries.
    Lu K; Jiang T; Hu H; Wu M
    Front Chem; 2020; 8():546728. PubMed ID: 33330352
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.