These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 26305156)
21. Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Oso S; Fuchs F; Übermuth C; Zander L; Daunaraviciute S; Remus DM; Stötzel I; Wüst M; Schreiber L; Remus-Emsermann MNP Appl Environ Microbiol; 2021 Apr; 87(9):. PubMed ID: 33608298 [TBL] [Abstract][Full Text] [Related]
22. Visualizing the relevance of bacterial blue- and red-light receptors during plant-pathogen interaction. Ricci A; Dramis L; Shah R; Gärtner W; Losi A Environ Microbiol Rep; 2015 Oct; 7(5):795-802. PubMed ID: 26147514 [TBL] [Abstract][Full Text] [Related]
23. Arabidopsis displays centromeric DNA hypomethylation and cytological alterations of heterochromatin upon attack by pseudomonas syringae. Pavet V; Quintero C; Cecchini NM; Rosa AL; Alvarez ME Mol Plant Microbe Interact; 2006 Jun; 19(6):577-87. PubMed ID: 16776291 [TBL] [Abstract][Full Text] [Related]
24. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae. Zhao Y; He SY; Sundin GW Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298 [TBL] [Abstract][Full Text] [Related]
25. Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Wensing A; Braun SD; Büttner P; Expert D; Völksch B; Ullrich MS; Weingart H Appl Environ Microbiol; 2010 May; 76(9):2704-11. PubMed ID: 20208028 [TBL] [Abstract][Full Text] [Related]
27. Pseudomonas syringae elicits emission of the terpenoid (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene in Arabidopsis leaves via jasmonate signaling and expression of the terpene synthase TPS4. Attaran E; Rostás M; Zeier J Mol Plant Microbe Interact; 2008 Nov; 21(11):1482-97. PubMed ID: 18842097 [TBL] [Abstract][Full Text] [Related]
28. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis. Mishina TE; Zeier J Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843 [TBL] [Abstract][Full Text] [Related]
29. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ]. Romanovskaia VA; Stoliar SM; Malashenko IuR; Dodatko TN Mikrobiologiia; 2001; 70(2):263-9. PubMed ID: 11386061 [TBL] [Abstract][Full Text] [Related]
30. Dual metabolomics: a novel approach to understanding plant-pathogen interactions. Allwood JW; Clarke A; Goodacre R; Mur LA Phytochemistry; 2010 Apr; 71(5-6):590-7. PubMed ID: 20138320 [TBL] [Abstract][Full Text] [Related]
31. High-throughput quantitative luminescence assay of the growth in planta of Pseudomonas syringae chromosomally tagged with Photorhabdus luminescens luxCDABE. Fan J; Crooks C; Lamb C Plant J; 2008 Jan; 53(2):393-9. PubMed ID: 17971037 [TBL] [Abstract][Full Text] [Related]
32. Role of leaf surface sugars in colonization of plants by bacterial epiphytes. Mercier J; Lindow SE Appl Environ Microbiol; 2000 Jan; 66(1):369-74. PubMed ID: 10618250 [TBL] [Abstract][Full Text] [Related]
33. Spatial scales of interactions among bacteria and between bacteria and the leaf surface. Esser DS; Leveau JH; Meyer KM; Wiegand K FEMS Microbiol Ecol; 2015 Mar; 91(3):. PubMed ID: 25764562 [TBL] [Abstract][Full Text] [Related]
34. Pseudomonas syringae infection triggers de novo synthesis of phytosphingosine from sphinganine in Arabidopsis thaliana. Peer M; Stegmann M; Mueller MJ; Waller F FEBS Lett; 2010 Sep; 584(18):4053-6. PubMed ID: 20732322 [TBL] [Abstract][Full Text] [Related]
35. Acyl-homoserine lactone-mediated cross talk among epiphytic bacteria modulates behavior of Pseudomonas syringae on leaves. Dulla GF; Lindow SE ISME J; 2009 Jul; 3(7):825-34. PubMed ID: 19340082 [TBL] [Abstract][Full Text] [Related]
36. Replicating Arabidopsis Model Leaf Surfaces for Phyllosphere Microbiology. Soffe R; Bernach M; Remus-Emsermann MNP; Nock V Sci Rep; 2019 Oct; 9(1):14420. PubMed ID: 31595008 [TBL] [Abstract][Full Text] [Related]
37. Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. Richter C; Dirks ME; Gronover CS; Prüfer D; Moerschbacher BM Mol Plant Microbe Interact; 2012 Feb; 25(2):200-10. PubMed ID: 22026646 [TBL] [Abstract][Full Text] [Related]
38. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Delmotte N; Knief C; Chaffron S; Innerebner G; Roschitzki B; Schlapbach R; von Mering C; Vorholt JA Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16428-33. PubMed ID: 19805315 [TBL] [Abstract][Full Text] [Related]
39. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Großkinsky DK; Tafner R; Moreno MV; Stenglein SA; García de Salamone IE; Nelson LM; Novák O; Strnad M; van der Graaff E; Roitsch T Sci Rep; 2016 Mar; 6():23310. PubMed ID: 26984671 [TBL] [Abstract][Full Text] [Related]
40. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae. Modolo LV; Augusto O; Almeida IM; Magalhaes JR; Salgado I FEBS Lett; 2005 Jul; 579(17):3814-20. PubMed ID: 15978583 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]