These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26305156)

  • 41. Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes.
    Nadalig T; Farhan Ul Haque M; Roselli S; Schaller H; Bringel F; Vuilleumier S
    FEMS Microbiol Ecol; 2011 Aug; 77(2):438-48. PubMed ID: 21545604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Yeast cell wall extract induces disease resistance against bacterial and fungal pathogens in Arabidopsis thaliana and Brassica crop.
    Narusaka M; Minami T; Iwabuchi C; Hamasaki T; Takasaki S; Kawamura K; Narusaka Y
    PLoS One; 2015; 10(1):e0115864. PubMed ID: 25565273
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression of antimicrobial peptides thanatin(S) in transgenic Arabidopsis enhanced resistance to phytopathogenic fungi and bacteria.
    Wu T; Tang D; Chen W; Huang H; Wang R; Chen Y
    Gene; 2013 Sep; 527(1):235-42. PubMed ID: 23820081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins.
    Oh HS; Collmer A
    Plant J; 2005 Oct; 44(2):348-59. PubMed ID: 16212612
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000.
    Lovelace AH; Smith A; Kvitko BH
    Mol Plant Microbe Interact; 2018 Jul; 31(7):750-765. PubMed ID: 29460676
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv. tomato is dependent on the oxidative burst.
    Simon C; Langlois-Meurinne M; Bellvert F; Garmier M; Didierlaurent L; Massoud K; Chaouch S; Marie A; Bodo B; Kauffmann S; Noctor G; Saindrenan P
    J Exp Bot; 2010 Jul; 61(12):3355-70. PubMed ID: 20530195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors.
    Üstün S; Sheikh A; Gimenez-Ibanez S; Jones A; Ntoukakis V; Börnke F
    Plant Physiol; 2016 Nov; 172(3):1941-1958. PubMed ID: 27613851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Signals involved in Arabidopsis resistance to Trichoplusia ni caterpillars induced by virulent and avirulent strains of the phytopathogen Pseudomonas syringae.
    Cui J; Jander G; Racki LR; Kim PD; Pierce NE; Ausubel FM
    Plant Physiol; 2002 Jun; 129(2):551-64. PubMed ID: 12068100
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana.
    Berger S; Benediktyová Z; Matous K; Bonfig K; Mueller MJ; Nedbal L; Roitsch T
    J Exp Bot; 2007; 58(4):797-806. PubMed ID: 17138624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enantioselective effects of imazethapyr residues on Arabidopsis thaliana metabolic profile and phyllosphere microbial communities.
    Zhao Q; Liu W; Li Y; Ke M; Qu Q; Yuan W; Pan X; Qian H
    J Environ Sci (China); 2020 Jul; 93():57-65. PubMed ID: 32446460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phevamine A, a small molecule that suppresses plant immune responses.
    O'Neill EM; Mucyn TS; Patteson JB; Finkel OM; Chung EH; Baccile JA; Massolo E; Schroeder FC; Dangl JL; Li B
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9514-E9522. PubMed ID: 30237288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pseudomonas syringae infection assays in Arabidopsis.
    Yao J; Withers J; He SY
    Methods Mol Biol; 2013; 1011():63-81. PubMed ID: 23615988
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Immunogold labeling of Hrp pili of Pseudomonas syringae pv. tomato assembled in minimal medium and in planta.
    Hu W; Yuan J; Jin QL; Hart P; He SY
    Mol Plant Microbe Interact; 2001 Feb; 14(2):234-41. PubMed ID: 11204787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinformatics correctly identifies many type III secretion substrates in the plant pathogen Pseudomonas syringae and the biocontrol isolate P. fluorescens SBW25.
    Vinatzer BA; Jelenska J; Greenberg JT
    Mol Plant Microbe Interact; 2005 Aug; 18(8):877-88. PubMed ID: 16134900
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis.
    Fabro G; Kovács I; Pavet V; Szabados L; Alvarez ME
    Mol Plant Microbe Interact; 2004 Apr; 17(4):343-50. PubMed ID: 15077666
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of imazethapyr spraying on plant growth and leaf surface microbial communities in Arabidopsis thaliana.
    Liu W; Ke M; Zhang Z; Lu T; Zhu Y; Li Y; Pan X; Qian H
    J Environ Sci (China); 2019 Nov; 85():35-45. PubMed ID: 31471029
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth.
    Gourion B; Rossignol M; Vorholt JA
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13186-91. PubMed ID: 16926146
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pseudomonas syringae Increases Water Availability in Leaf Microenvironments via Production of Hygroscopic Syringafactin.
    Hernandez MN; Lindow SE
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31285194
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial distribution analyses of natural phyllosphere-colonizing bacteria on Arabidopsis thaliana revealed by fluorescence in situ hybridization.
    Remus-Emsermann MN; Lücker S; Müller DB; Potthoff E; Daims H; Vorholt JA
    Environ Microbiol; 2014 Jul; 16(7):2329-40. PubMed ID: 24725362
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Leaf metabolic influence of glyphosate and nanotubes on the Arabidopsis thaliana phyllosphere.
    Ke M; Ye Y; Li Y; Zhou Z; Xu N; Feng L; Zhang J; Lu T; Cai Z; Qian H
    J Environ Sci (China); 2021 Aug; 106():66-75. PubMed ID: 34210440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.