These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 26305234)

  • 21. Confinement of polysulfides within bi-functional metal-organic frameworks for high performance lithium-sulfur batteries.
    Hong XJ; Tan TX; Guo YK; Tang XY; Wang JY; Qin W; Cai YP
    Nanoscale; 2018 Feb; 10(6):2774-2780. PubMed ID: 29323375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rational Integration of Polypropylene/Graphene Oxide/Nafion as Ternary-Layered Separator to Retard the Shuttle of Polysulfides for Lithium-Sulfur Batteries.
    Zhuang TZ; Huang JQ; Peng HJ; He LY; Cheng XB; Chen CM; Zhang Q
    Small; 2016 Jan; 12(3):381-9. PubMed ID: 26641415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium-Sulfur Batteries.
    Chen S; Dai F; Gordin ML; Yu Z; Gao Y; Song J; Wang D
    Angew Chem Int Ed Engl; 2016 Mar; 55(13):4231-5. PubMed ID: 26918660
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon Nitride Phosphorus as an Effective Lithium Polysulfide Adsorbent for Lithium-Sulfur Batteries.
    Do V; Deepika ; Kim MS; Kim MS; Lee KR; Cho WI
    ACS Appl Mater Interfaces; 2019 Mar; 11(12):11431-11441. PubMed ID: 30874419
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Powering Lithium-Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts.
    Yuan Z; Peng HJ; Hou TZ; Huang JQ; Chen CM; Wang DW; Cheng XB; Wei F; Zhang Q
    Nano Lett; 2016 Jan; 16(1):519-27. PubMed ID: 26713782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-atom Catalytic Materials for Lean-electrolyte Ultrastable Lithium-Sulfur Batteries.
    Lu C; Chen Y; Yang Y; Chen X
    Nano Lett; 2020 Jul; 20(7):5522-5530. PubMed ID: 32579363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fast, reversible lithium storage with a sulfur/long-chain-polysulfide redox couple.
    Su YS; Fu Y; Guo B; Dai S; Manthiram A
    Chemistry; 2013 Jun; 19(26):8621-6. PubMed ID: 23670897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrocatalysis of polysulfide conversion by conductive RuO
    Wang R; Wang K; Gao S; Jiang M; Han J; Zhou M; Cheng S; Jiang K
    Nanoscale; 2018 Sep; 10(35):16730-16737. PubMed ID: 30156247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries.
    Xu G; Ding B; Nie P; Shen L; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):194-9. PubMed ID: 24344876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improvement of Cycling Performance of Lithium-Sulfur Batteries by Using Magnesium Oxide as a Functional Additive for Trapping Lithium Polysulfide.
    Ponraj R; Kannan AG; Ahn JH; Kim DW
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4000-6. PubMed ID: 26808673
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Carbon Current Collector Promises Small Sulfur Molecule Cathode with High Areal Loading for Lithium-Sulfur Batteries.
    Zhao Q; Zhu Q; Miao J; Guan Z; Liu H; Chen R; An Y; Wu F; Xu B
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10882-10889. PubMed ID: 29533653
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-Life and High-Areal-Capacity Li-S Batteries Enabled by a Light-Weight Polar Host with Intrinsic Polysulfide Adsorption.
    Pang Q; Nazar LF
    ACS Nano; 2016 Apr; 10(4):4111-8. PubMed ID: 26841116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of Binary Active Sites: Co
    Zhang L; Wan F; Cao H; Liu L; Wang Y; Niu Z
    Small; 2020 May; 16(18):e1907153. PubMed ID: 32285595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A waste newspaper/multi-walled carbon nanotube/TiO
    Yan C; Zhou X; Wei Y; He S
    Dalton Trans; 2020 Aug; 49(33):11675-11681. PubMed ID: 32785354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilized Lithium-Sulfur Batteries by Covalently Binding Sulfur onto the Thiol-Terminated Polymeric Matrices.
    Liu X; Xu N; Qian T; Liu J; Shen X; Yan C
    Small; 2017 Nov; 13(44):. PubMed ID: 28961372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Paving the way for using Li₂S batteries.
    Xu R; Zhang X; Yu C; Ren Y; Li JC; Belharouak I
    ChemSusChem; 2014 Sep; 7(9):2457-60. PubMed ID: 25044568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Insight into sulfur reactions in Li-S batteries.
    Xu R; Belharouak I; Zhang X; Chamoun R; Yu C; Ren Y; Nie A; Shahbazian-Yassar R; Lu J; Li JC; Amine K
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21938-45. PubMed ID: 25425055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effective Trapping of Lithium Polysulfides Using a Functionalized Carbon Nanotube-Coated Separator for Lithium-Sulfur Cells with Enhanced Cycling Stability.
    Ponraj R; Kannan AG; Ahn JH; Lee JH; Kang J; Han B; Kim DW
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38445-38454. PubMed ID: 29035030
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.