These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26305516)

  • 1. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes.
    Sallmann M; Limberg C
    Acc Chem Res; 2015 Oct; 48(10):2734-43. PubMed ID: 26305516
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Tris(pyrazolyl)borate-Based Models of Cysteine/Cysteamine Dioxygenases through Steric Effects: Increased Reactivities, Full Product Characterization and Hints to Initial Superoxide Formation.
    Müller L; Hoof S; Keck M; Herwig C; Limberg C
    Chemistry; 2020 Sep; 26(51):11851-11861. PubMed ID: 32432367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic and computational studies of reversible O
    Fischer AA; Lindeman SV; Fiedler AT
    Dalton Trans; 2017 Oct; 46(39):13229-13241. PubMed ID: 28686274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes.
    Nam W; Lee YM; Fukuzumi S
    Acc Chem Res; 2014 Apr; 47(4):1146-54. PubMed ID: 24524675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of Fe(II) β-diketonato complexes with relevance to acetylacetone dioxygenase: insights into the electronic properties of the 3-histidine facial triad.
    Park H; Baus JS; Lindeman SV; Fiedler AT
    Inorg Chem; 2011 Dec; 50(23):11978-89. PubMed ID: 22034915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dioxygenation of cysteamine to hypotaurine at a tris(pyrazolyl)borate iron(ii) unit - cysteamine dioxygenase mimicking?
    Sallmann M; Braun B; Limberg C
    Chem Commun (Camb); 2015 Apr; 51(31):6785-7. PubMed ID: 25786780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aliphatic C-C Bond Cleavage of α-Hydroxy Ketones by Non-Heme Iron(II) Complexes: Mechanistic Insight into the Reaction Catalyzed by 2,4'-Dihydroxyacetophenone Dioxygenase.
    Rahaman R; Paria S; Paine TK
    Inorg Chem; 2015 Nov; 54(22):10576-86. PubMed ID: 26536067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-his triad in Dke1: comparisons to the classical facial triad.
    Diebold AR; Neidig ML; Moran GR; Straganz GD; Solomon EI
    Biochemistry; 2010 Aug; 49(32):6945-52. PubMed ID: 20695531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate.
    Mehn MP; Fujisawa K; Hegg EL; Que L
    J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, X-ray Structures, Electronic Properties, and O
    Fischer AA; Stracey N; Lindeman SV; Brunold TC; Fiedler AT
    Inorg Chem; 2016 Nov; 55(22):11839-11853. PubMed ID: 27801576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the 2-His-1-carboxylate facial triad: iron-catecholato complexes as structural and functional models of the extradiol cleaving dioxygenases.
    Bruijnincx PC; Lutz M; Spek AL; Hagen WR; Weckhuysen BM; van Koten G; Gebbink RJ
    J Am Chem Soc; 2007 Feb; 129(8):2275-86. PubMed ID: 17266307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases.
    Fernandez RL; Juntunen ND; Brunold TC
    Acc Chem Res; 2022 Sep; 55(17):2480-2490. PubMed ID: 35994511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and mechanism leading to formation of the cysteine sulfinate product complex of a biomimetic cysteine dioxygenase model.
    Sallmann M; Kumar S; Chernev P; Nehrkorn J; Schnegg A; Kumar D; Dau H; Limberg C; de Visser SP
    Chemistry; 2015 May; 21(20):7470-9. PubMed ID: 25823421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state substrate specificity and O₂-coupling efficiency of mouse cysteine dioxygenase.
    Li W; Pierce BS
    Arch Biochem Biophys; 2015 Jan; 565():49-56. PubMed ID: 25444857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron(III) complexes of tripodal monophenolate ligands as models for non-heme catechol dioxygenase enzymes: correlation of dioxygenase activity with ligand stereoelectronic properties.
    Mayilmurugan R; Visvaganesan K; Suresh E; Palaniandavar M
    Inorg Chem; 2009 Sep; 48(18):8771-83. PubMed ID: 19694480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Structural and Functional Model for the Tris-Histidine Motif in Cysteine Dioxygenase.
    Anandababu K; Ramasubramanian R; Wadepohl H; Comba P; Johnee Britto N; Jaccob M; Mayilmurugan R
    Chemistry; 2019 Jul; 25(40):9540-9547. PubMed ID: 31090109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural and functional model for the 1-aminocyclopropane-1-carboxylic acid oxidase.
    Sallmann M; Oldenburg F; Braun B; Réglier M; Simaan AJ; Limberg C
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12325-8. PubMed ID: 26190407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.