These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 26305572)
1. Janus Solid-Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Zheng J; Hou Y; Duan Y; Song X; Wei Y; Liu T; Hu J; Guo H; Zhuo Z; Liu L; Chang Z; Wang X; Zherebetskyy D; Fang Y; Lin Y; Xu K; Wang LW; Wu Y; Pan F Nano Lett; 2015 Sep; 15(9):6102-9. PubMed ID: 26305572 [TBL] [Abstract][Full Text] [Related]
2. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
3. Colloid Electrolyte with Changed Li Wang X; Yang L; Ahmad N; Ran L; Shao R; Yang W Adv Mater; 2023 Mar; 35(12):e2209140. PubMed ID: 36634272 [TBL] [Abstract][Full Text] [Related]
4. Effect of Organic Electrolyte on the Performance of Solid Electrolyte for Solid-Liquid Hybrid Lithium Batteries. Tang J; Wang L; You L; Chen X; Huang T; Zhou L; Geng Z; Yu A ACS Appl Mater Interfaces; 2021 Jan; 13(2):2685-2693. PubMed ID: 33416323 [TBL] [Abstract][Full Text] [Related]
5. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
6. A Scalable Cathode Chemical Prelithiation Strategy for Advanced Silicon-Based Lithium Ion Full Batteries. Liu Z; Ma S; Mu X; Li R; Yin G; Zuo P ACS Appl Mater Interfaces; 2021 Mar; 13(10):11985-11994. PubMed ID: 33683090 [TBL] [Abstract][Full Text] [Related]
7. Poly(ethylene oxide)-co-poly(propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. Wang SH; Hou SS; Kuo PL; Teng H ACS Appl Mater Interfaces; 2013 Sep; 5(17):8477-85. PubMed ID: 23931907 [TBL] [Abstract][Full Text] [Related]
8. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
9. Surface Modification of the LiFePO Tron A; Jo YN; Oh SH; Park YD; Mun J ACS Appl Mater Interfaces; 2017 Apr; 9(14):12391-12399. PubMed ID: 28322545 [TBL] [Abstract][Full Text] [Related]
10. In situ Electrochemical-AFM Study of LiFePO4 Thin Film in Aqueous Electrolyte. Wu J; Cai W; Shang G Nanoscale Res Lett; 2016 Dec; 11(1):223. PubMed ID: 27117633 [TBL] [Abstract][Full Text] [Related]
11. Superior Blends Solid Polymer Electrolyte with Integrated Hierarchical Architectures for All-Solid-State Lithium-Ion Batteries. Zhang D; Zhang L; Yang K; Wang H; Yu C; Xu D; Xu B; Wang LM ACS Appl Mater Interfaces; 2017 Oct; 9(42):36886-36896. PubMed ID: 28985458 [TBL] [Abstract][Full Text] [Related]
12. Rational Design of an Electron/Ion Dual-Conductive Cathode Framework for High-Performance All-Solid-State Lithium Batteries. Wang J; Yan X; Zhang Z; Guo R; Ying H; Han G; Han WQ ACS Appl Mater Interfaces; 2020 Sep; 12(37):41323-41332. PubMed ID: 32830944 [TBL] [Abstract][Full Text] [Related]
13. Excess Li-Ion Storage on Reconstructed Surfaces of Nanocrystals To Boost Battery Performance. Duan Y; Zhang B; Zheng J; Hu J; Wen J; Miller DJ; Yan P; Liu T; Guo H; Li W; Song X; Zhuo Z; Liu C; Tang H; Tan R; Chen Z; Ren Y; Lin Y; Yang W; Wang CM; Wang LW; Lu J; Amine K; Pan F Nano Lett; 2017 Oct; 17(10):6018-6026. PubMed ID: 28771015 [TBL] [Abstract][Full Text] [Related]
14. Molecular Effects of Li Wang PY; Chiu TH; Chiu CC Polymers (Basel); 2024 Jan; 16(3):. PubMed ID: 38337208 [TBL] [Abstract][Full Text] [Related]
15. Ultra-stable Li||LiFePO Lin Y; Zhang X; Liu Y; Wang Q; Lin C; Chen S; Zhang Y J Colloid Interface Sci; 2022 Dec; 628(Pt B):14-23. PubMed ID: 35973254 [TBL] [Abstract][Full Text] [Related]
16. Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries. Li Y; Chen X; Dolocan A; Cui Z; Xin S; Xue L; Xu H; Park K; Goodenough JB J Am Chem Soc; 2018 May; 140(20):6448-6455. PubMed ID: 29688712 [TBL] [Abstract][Full Text] [Related]
17. Remarkable Conductivity of a Self-Healing Single-Ion Conducting Polymer Electrolyte, Poly(ethylene- Ahmed F; Choi I; Rahman MM; Jang H; Ryu T; Yoon S; Jin L; Jin Y; Kim W ACS Appl Mater Interfaces; 2019 Sep; 11(38):34930-34938. PubMed ID: 31469269 [TBL] [Abstract][Full Text] [Related]
18. Quantifying Diffusion through Interfaces of Lithium-Ion Battery Active Materials. Benedek P; Forslund OK; Nocerino E; Yazdani N; Matsubara N; Sassa Y; Jurànyi F; Medarde M; Telling M; Månsson M; Wood V ACS Appl Mater Interfaces; 2020 Apr; 12(14):16243-16249. PubMed ID: 32163263 [TBL] [Abstract][Full Text] [Related]
19. Nanostructured Metal-Organic Framework (MOF)-Derived Solid Electrolytes Realizing Fast Lithium Ion Transportation Kinetics in Solid-State Batteries. Wu JF; Guo X Small; 2019 Feb; 15(5):e1804413. PubMed ID: 30624013 [TBL] [Abstract][Full Text] [Related]
20. Garnet Solid Electrolyte Protected Li-Metal Batteries. Liu B; Gong Y; Fu K; Han X; Yao Y; Pastel G; Yang C; Xie H; Wachsman ED; Hu L ACS Appl Mater Interfaces; 2017 Jun; 9(22):18809-18815. PubMed ID: 28497951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]