These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. Pandey RK; Kumbhar BV; Sundar S; Kunwar A; Prajapati VK J Recept Signal Transduct Res; 2017 Feb; 37(1):60-70. PubMed ID: 27147242 [TBL] [Abstract][Full Text] [Related]
3. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. Pandey RK; Kumbhar BV; Srivastava S; Malik R; Sundar S; Kunwar A; Prajapati VK J Biomol Struct Dyn; 2017 Jan; 35(1):141-158. PubMed ID: 27043972 [TBL] [Abstract][Full Text] [Related]
4. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Colotti G; Saccoliti F; Gramiccia M; Di Muccio T; Prakash J; Yadav S; Dubey VK; Vistoli G; Battista T; Mocci S; Fiorillo A; Bibi A; Madia VN; Messore A; Costi R; Di Santo R; Ilari A Amino Acids; 2020 Feb; 52(2):247-259. PubMed ID: 31037461 [TBL] [Abstract][Full Text] [Related]
5. High-throughput virtual screening and quantum mechanics approach to develop imipramine analogues as leads against trypanothione reductase of leishmania. Pandey RK; Verma P; Sharma D; Bhatt TK; Sundar S; Prajapati VK Biomed Pharmacother; 2016 Oct; 83():141-152. PubMed ID: 27470561 [TBL] [Abstract][Full Text] [Related]
6. Identification of Novel Antileishmanial Chemotypes By High-Throughput Virtual and In Vitro Screening. Khan H; Hakami MA; Alamri MA; Alotaibi BS; Ullah N; Khan R; Khalid A; Abdalla AN; Wadood A Acta Parasitol; 2024 Sep; 69(3):1439-1457. PubMed ID: 39150581 [TBL] [Abstract][Full Text] [Related]
7. Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Pramanik PK; Chakraborti S; Bagchi A; Chakraborti T Sci Rep; 2020 Nov; 10(1):20440. PubMed ID: 33235245 [TBL] [Abstract][Full Text] [Related]
8. Molecular Modeling and Virtual Screening Approach to Discover Potential Antileishmanial Inhibitors Against Ornithine Decarboxylase. Pandey RK; Prajapati P; Goyal S; Grover A; Prajapati VK Comb Chem High Throughput Screen; 2016; 19(10):813-823. PubMed ID: 27604958 [TBL] [Abstract][Full Text] [Related]
9. Antiparasitic dibenzalacetone inhibits the GTPase activity of Rab6 protein of Leishmania donovani (LdRab6), a potential target for its antileishmanial effect. Chauhan IS; Marwa S; Rao GS; Singh N Parasitol Res; 2020 Sep; 119(9):2991-3003. PubMed ID: 32748038 [TBL] [Abstract][Full Text] [Related]
10. Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. Turcano L; Torrente E; Missineo A; Andreini M; Gramiccia M; Di Muccio T; Genovese I; Fiorillo A; Harper S; Bresciani A; Colotti G; Ilari A PLoS Negl Trop Dis; 2018 Nov; 12(11):e0006969. PubMed ID: 30475811 [TBL] [Abstract][Full Text] [Related]
11. Targeting the Trypanothione Reductase of Tissue-Residing Mukherjee D; Yousuf M; Dey S; Chakraborty S; Chaudhuri A; Kumar V; Sarkar B; Nath S; Hussain A; Dutta A; Mishra T; Roy BG; Singh S; Chakraborty S; Adhikari S; Pal C J Med Chem; 2020 Dec; 63(24):15621-15638. PubMed ID: 33296601 [TBL] [Abstract][Full Text] [Related]
12. Molecular docking, structure-activity relationship and biological evaluation of the anticancer drug monastrol as a pteridine reductase inhibitor in a clinical isolate of Leishmania donovani. Kaur J; Sundar S; Singh N J Antimicrob Chemother; 2010 Aug; 65(8):1742-8. PubMed ID: 20519355 [TBL] [Abstract][Full Text] [Related]
13. Binding to large enzyme pockets: small-molecule inhibitors of trypanothione reductase. Persch E; Bryson S; Todoroff NK; Eberle C; Thelemann J; Dirdjaja N; Kaiser M; Weber M; Derbani H; Brun R; Schneider G; Pai EF; Krauth-Siegel RL; Diederich F ChemMedChem; 2014 Aug; 9(8):1880-91. PubMed ID: 24788386 [TBL] [Abstract][Full Text] [Related]
14. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. Chan C; Yin H; Garforth J; McKie JH; Jaouhari R; Speers P; Douglas KT; Rock PJ; Yardley V; Croft SL; Fairlamb AH J Med Chem; 1998 Jan; 41(2):148-56. PubMed ID: 9457238 [TBL] [Abstract][Full Text] [Related]
16. Exploration of New and Potent Lead Molecules Against CAAX Prenyl Protease I of Leishmania donovani Through Pharmacophore Based Virtual Screening Approach. Prabhu SV; Tiwari K; Suryanarayanan V; Dubey VK; Singh SK Comb Chem High Throughput Screen; 2017; 20(3):255-271. PubMed ID: 28116998 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into the enzymes of the trypanothione pathway: targets for antileishmaniasis drugs. Colotti G; Baiocco P; Fiorillo A; Boffi A; Poser E; Chiaro FD; Ilari A Future Med Chem; 2013 Oct; 5(15):1861-75. PubMed ID: 24144416 [TBL] [Abstract][Full Text] [Related]
18. Screening of Novel Inhibitors Against Leishmania donovani Calcium ion Channel to Fight Leishmaniasis. Kashif M; Manna PP; Akhter Y; Alaidarous M; Rub A Infect Disord Drug Targets; 2017; 17(2):120-129. PubMed ID: 28034363 [TBL] [Abstract][Full Text] [Related]
19. Repurposing Glyburide as Antileishmanial Agent to Fight Against Leishmaniasis. Rub A; Shaker K; Kashif M; Arish M; Dukhyil AAB; Alshehri BM; Alaidarous MA; Banawas S; Amir K Protein Pept Lett; 2019; 26(5):371-376. PubMed ID: 30827222 [TBL] [Abstract][Full Text] [Related]
20. One-Pot Synthesis and Evaluation of Antileishmanial Activities of Functionalized S-Alkyl/Aryl Benzothiazole-2-carbothioate Scaffold. Dar AA; Shadab M; Khan S; Ali N; Khan AT J Org Chem; 2016 Apr; 81(8):3149-60. PubMed ID: 26999637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]