These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 26305925)

  • 1. Two methods for estimating limits to large-scale wind power generation.
    Miller LM; Brunsell NA; Mechem DB; Gans F; Monaghan AJ; Vautard R; Keith DW; Kleidon A
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11169-74. PubMed ID: 26305925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind speed reductions by large-scale wind turbine deployments lower turbine efficiencies and set low generation limits.
    Miller LM; Kleidon A
    Proc Natl Acad Sci U S A; 2016 Nov; 113(48):13570-13575. PubMed ID: 27849587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geophysical potential for wind energy over the open oceans.
    Possner A; Caldeira K
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11338-11343. PubMed ID: 29073053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial constraints in large-scale expansion of wind power plants.
    Antonini EGA; Caldeira K
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34183400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of offshore wind farms on the atmospheric environment over Taiwan Strait during an extreme weather typhoon event.
    Lee TY; Wu YT; Kueh MT; Lin CY; Lin YY; Sheng YF
    Sci Rep; 2022 Jan; 12(1):823. PubMed ID: 35039590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fish schooling as a basis for vertical axis wind turbine farm design.
    Whittlesey RW; Liska S; Dabiri JO
    Bioinspir Biomim; 2010 Sep; 5(3):035005. PubMed ID: 20729568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space, Time, and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe.
    Dammeier LC; Loriaux JM; Steinmann ZJN; Smits DA; Wijnant IL; van den Hurk B; Huijbregts MAJ
    Environ Sci Technol; 2019 Aug; 53(15):9289-9297. PubMed ID: 31269396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    Germer S; Kleidon A
    PLoS One; 2019; 14(2):e0211028. PubMed ID: 30726244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of power generation and rotor angular speed of a small wind turbine equipped to a controllable duct using artificial neural network and multiple linear regression.
    Siavash NK; Ghobadian B; Najafi G; Rohani A; Tavakoli T; Mahmoodi E; Mamat R; Mazlan M
    Environ Res; 2021 May; 196():110434. PubMed ID: 33166537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of arrays of in-stream tidal turbines in the Bay of Fundy.
    Karsten R; Swan A; Culina J
    Philos Trans A Math Phys Eng Sci; 2013 Feb; 371(1985):20120189. PubMed ID: 23319706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of ANN-based wind power forecasting by modification of surface roughness parameterization over complex terrain.
    Kim J; Shin HJ; Lee K; Hong J
    J Environ Manage; 2024 Jun; 362():121246. PubMed ID: 38823298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Larger wind turbines as a solution to reduce environmental impacts.
    Akhtar N; Geyer B; Schrum C
    Sci Rep; 2024 Mar; 14(1):6608. PubMed ID: 38504127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms.
    Vautard R; Thais F; Tobin I; Bréon FM; Devezeaux de Lavergne JG; Colette A; Yiou P; Ruti PM
    Nat Commun; 2014; 5():3196. PubMed ID: 24518587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saturation wind power potential and its implications for wind energy.
    Jacobson MZ; Archer CL
    Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15679-84. PubMed ID: 23019353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing wind power generation while minimizing wildlife impacts in an urban area.
    Bohrer G; Zhu K; Jones RL; Curtis PS
    PLoS One; 2013; 8(2):e56036. PubMed ID: 23409117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal control framework for dynamic induction control of wind farms and their interaction with the atmospheric boundary layer.
    Munters W; Meyers J
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of large-scale wind power on global climate.
    Keith DW; Decarolis JF; Denkenberger DC; Lenschow DH; Malyshev SL; Pacala S; Rasch PJ
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16115-20. PubMed ID: 15536131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reliability Estimation of Parameters of Helical Wind Turbine with Vertical Axis.
    Dumitrascu AE; Lepadatescu B; Dumitrascu DI; Nedelcu A; Ciobanu DV
    ScientificWorldJournal; 2015; 2015():296762. PubMed ID: 26167524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison between the dynamics of horizontal and vertical axis offshore floating wind turbines.
    Borg M; Collu M
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the hurricane catastrophe risk to offshore wind power.
    Rose S; Jaramillo P; Small MJ; Apt J
    Risk Anal; 2013 Dec; 33(12):2126-41. PubMed ID: 23763387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.