These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26306501)

  • 21. Reduced graphene oxide-TaON composite as a high-performance counter electrode for Co(bpy)3(3+/2+)-mediated dye-sensitized solar cells.
    Li Y; Wang H; Feng Q; Zhou G; Wang ZS
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8217-24. PubMed ID: 23855746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-Pot controlled synthesis of spongelike CuInS(2) microspheres for efficient counter electrode with graphene assistance in dye-sensitized solar cells.
    Liu M; Li G; Chen X
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2604-10. PubMed ID: 24513016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinatorial Reactive Sputtering of In2S3 as an Alternative Contact Layer for Thin Film Solar Cells.
    Siol S; Dhakal TP; Gudavalli GS; Rajbhandari PP; DeHart C; Baranowski LL; Zakutayev A
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14004-11. PubMed ID: 27173477
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vertically aligned single-walled carbon nanotubes as low-cost and high electrocatalytic counter electrode for dye-sensitized solar cells.
    Dong P; Pint CL; Hainey M; Mirri F; Zhan Y; Zhang J; Pasquali M; Hauge RH; Verduzco R; Jiang M; Lin H; Lou J
    ACS Appl Mater Interfaces; 2011 Aug; 3(8):3157-61. PubMed ID: 21770421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient low-temperature transparent electrocatalytic layers based on graphene oxide nanosheets for dye-sensitized solar cells.
    Seo SH; Jeong EJ; Han JT; Kang HC; Cha SI; Lee DY; Lee GW
    ACS Appl Mater Interfaces; 2015 May; 7(20):10863-71. PubMed ID: 25945810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Graphene nanoplatelet cathode for Co(III)/(II) mediated dye-sensitized solar cells.
    Kavan L; Yum JH; Nazeeruddin MK; Grätzel M
    ACS Nano; 2011 Nov; 5(11):9171-8. PubMed ID: 21995546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrothermal growth of TiO2 nanorod arrays and in situ conversion to nanotube arrays for highly efficient quantum dot-sensitized solar cells.
    Huang H; Pan L; Lim CK; Gong H; Guo J; Tse MS; Tan OK
    Small; 2013 Sep; 9(18):3153-60. PubMed ID: 23606243
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Podlike N-doped carbon nanotubes encapsulating FeNi alloy nanoparticles: high-performance counter electrode materials for dye-sensitized solar cells.
    Zheng X; Deng J; Wang N; Deng D; Zhang WH; Bao X; Li C
    Angew Chem Int Ed Engl; 2014 Jul; 53(27):7023-7. PubMed ID: 24800923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-performance dye-sensitized solar cells with gel-coated binder-free carbon nanotube films as counter electrode.
    Mei X; Cho SJ; Fan B; Ouyang J
    Nanotechnology; 2010 Oct; 21(39):395202. PubMed ID: 20820098
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of photovoltaics with In2S3 nanoflakes/p-Si heterojunction.
    Hsiao YJ; Lu CH; Ji LW; Meen TH; Chen YL; Chi HP
    Nanoscale Res Lett; 2014 Jan; 9(1):32. PubMed ID: 24428954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells.
    Liu B; Aydil ES
    J Am Chem Soc; 2009 Mar; 131(11):3985-90. PubMed ID: 19245201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells.
    Gong F; Xu X; Zhou G; Wang ZS
    Phys Chem Chem Phys; 2013 Jan; 15(2):546-52. PubMed ID: 23171993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrathin FeSe2 nanosheets: controlled synthesis and application as a heterogeneous catalyst in dye-sensitized solar cells.
    Huang S; He Q; Chen W; Qiao Q; Zai J; Qian X
    Chemistry; 2015 Mar; 21(10):4085-91. PubMed ID: 25640264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glucose aided preparation of tungsten sulfide/multi-wall carbon nanotube hybrid and use as counter electrode in dye-sensitized solar cells.
    Wu J; Yue G; Xiao Y; Huang M; Lin J; Fan L; Lan Z; Lin JY
    ACS Appl Mater Interfaces; 2012 Dec; 4(12):6530-6. PubMed ID: 23182023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrothermal fabrication of quasi-one-dimensional single-crystalline anatase TiO2 nanostructures on FTO glass and their applications in dye-sensitized solar cells.
    Liao JY; Lei BX; Wang YF; Liu JM; Su CY; Kuang DB
    Chemistry; 2011 Jan; 17(4):1352-7. PubMed ID: 21243703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ growth of Co(0.85)Se and Ni(0.85)Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells.
    Gong F; Wang H; Xu X; Zhou G; Wang ZS
    J Am Chem Soc; 2012 Jul; 134(26):10953-8. PubMed ID: 22713119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In situ growth of hierarchical NiS2 hollow microspheres as efficient counter electrode for dye-sensitized solar cell.
    Wan Z; Jia C; Wang Y
    Nanoscale; 2015 Aug; 7(29):12737-42. PubMed ID: 26153640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Growth mechanism of titanium dioxide nanowires for dye-sensitized solar cells.
    Boercker JE; Enache-Pommer E; Aydil ES
    Nanotechnology; 2008 Mar; 19(9):095604. PubMed ID: 21817679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Room-temperature synthesis of Cu(2-x)E (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells.
    Chen XQ; Li Z; Bai Y; Sun Q; Wang LZ; Dou SX
    Chemistry; 2015 Jan; 21(3):1055-63. PubMed ID: 25400022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bifunctional nanocatalyst based on three-dimensional carbon nanotube-graphene hydrogel supported Pd nanoparticles: one-pot synthesis and its catalytic properties.
    Zhang Z; Sun T; Chen C; Xiao F; Gong Z; Wang S
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):21035-40. PubMed ID: 25375195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.