These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26306621)

  • 1. ReCAP: Feasibility and Accuracy of Extracting Cancer Stage Information From Narrative Electronic Health Record Data.
    Warner JL; Levy MA; Neuss MN; Warner JL; Levy MA; Neuss MN
    J Oncol Pract; 2016 Feb; 12(2):157-8; e169-7. PubMed ID: 26306621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning for Natural Language Processing in Urology: State-of-the-Art Automated Extraction of Detailed Pathologic Prostate Cancer Data From Narratively Written Electronic Health Records.
    Leyh-Bannurah SR; Tian Z; Karakiewicz PI; Wolffgang U; Sauter G; Fisch M; Pehrke D; Huland H; Graefen M; Budäus L
    JCO Clin Cancer Inform; 2018 Dec; 2():1-9. PubMed ID: 30652616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated feature selection of predictors in electronic medical records data.
    Gronsbell J; Minnier J; Yu S; Liao K; Cai T
    Biometrics; 2019 Mar; 75(1):268-277. PubMed ID: 30353541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Travel History Extraction From Clinical Notes for Informing the Detection of Emergent Infectious Disease Events: Algorithm Development and Validation.
    Peterson KS; Lewis J; Patterson OV; Chapman AB; Denhalter DW; Lye PA; Stevens VW; Gamage SD; Roselle GA; Wallace KS; Jones M
    JMIR Public Health Surveill; 2021 Mar; 7(3):e26719. PubMed ID: 33759790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building a tobacco user registry by extracting multiple smoking behaviors from clinical notes.
    Palmer EL; Hassanpour S; Higgins J; Doherty JA; Onega T
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):141. PubMed ID: 31340796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward high-throughput phenotyping: unbiased automated feature extraction and selection from knowledge sources.
    Yu S; Liao KP; Shaw SY; Gainer VS; Churchill SE; Szolovits P; Murphy SN; Kohane IS; Cai T
    J Am Med Inform Assoc; 2015 Sep; 22(5):993-1000. PubMed ID: 25929596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural Language Processing Algorithm to Extract Multiple Myeloma Stage From Oncology Notes in the Veterans Affairs Healthcare System.
    Goryachev SD; Yildirim C; DuMontier C; La J; Dharne M; Gaziano JM; Brophy MT; Munshi NC; Driver JA; Do NV; Fillmore NR
    JCO Clin Cancer Inform; 2024 Jul; 8():e2300197. PubMed ID: 39038255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Extraction and Classification of Cancer Stage Mentions fromUnstructured Text Fields in a Central Cancer Registry.
    AAlAbdulsalam AK; Garvin JH; Redd A; Carter ME; Sweeny C; Meystre SM
    AMIA Jt Summits Transl Sci Proc; 2018; 2017():16-25. PubMed ID: 29888032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracting lung cancer staging descriptors from pathology reports: A generative language model approach.
    Cho H; Yoo S; Kim B; Jang S; Sunwoo L; Kim S; Lee D; Kim S; Nam S; Chung JH
    J Biomed Inform; 2024 Sep; 157():104720. PubMed ID: 39233209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases.
    Xu H; Fu Z; Shah A; Chen Y; Peterson NB; Chen Q; Mani S; Levy MA; Dai Q; Denny JC
    AMIA Annu Symp Proc; 2011; 2011():1564-72. PubMed ID: 22195222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Identify and Estimate Survival in a Longitudinal Cohort of Patients With Lung Cancer.
    Yuan Q; Cai T; Hong C; Du M; Johnson BE; Lanuti M; Cai T; Christiani DC
    JAMA Netw Open; 2021 Jul; 4(7):e2114723. PubMed ID: 34232304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. External Validation of Natural Language Processing Algorithms to Extract Common Data Elements in THA Operative Notes.
    Wyles CC; Fu S; Odum SL; Rowe T; Habet NA; Berry DJ; Lewallen DG; Maradit-Kremers H; Sohn S; Springer BD
    J Arthroplasty; 2023 Oct; 38(10):2081-2084. PubMed ID: 36280160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying and characterizing highly similar notes in big clinical note datasets.
    Gabriel RA; Kuo TT; McAuley J; Hsu CN
    J Biomed Inform; 2018 Jun; 82():63-69. PubMed ID: 29679685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural language processing for populating lung cancer clinical research data.
    Wang L; Luo L; Wang Y; Wampfler J; Yang P; Liu H
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):239. PubMed ID: 31801515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing data availability and quality within an electronic health record system through external validation against an external clinical data source.
    Palmer EL; Higgins J; Hassanpour S; Sargent J; Robinson CM; Doherty JA; Onega T
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):143. PubMed ID: 31345210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regular expression-based learning to extract bodyweight values from clinical notes.
    Murtaugh MA; Gibson BS; Redd D; Zeng-Treitler Q
    J Biomed Inform; 2015 Apr; 54():186-90. PubMed ID: 25746391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The need for harmonized structured documentation and chances of secondary use - results of a systematic analysis with automated form comparison for prostate and breast cancer.
    Krumm R; Semjonow A; Tio J; Duhme H; Bürkle T; Haier J; Dugas M; Breil B
    J Biomed Inform; 2014 Oct; 51():86-99. PubMed ID: 24747879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: Generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases.
    Naseri H; Kafi K; Skamene S; Tolba M; Faye MD; Ramia P; Khriguian J; Kildea J
    J Biomed Inform; 2021 Aug; 120():103864. PubMed ID: 34265451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy and generalizability of using automated methods for identifying adverse events from electronic health record data: a validation study protocol.
    Rochefort CM; Buckeridge DL; Tanguay A; Biron A; D'Aragon F; Wang S; Gallix B; Valiquette L; Audet LA; Lee TC; Jayaraman D; Petrucci B; Lefebvre P
    BMC Health Serv Res; 2017 Feb; 17(1):147. PubMed ID: 28209197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.