These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26306712)

  • 21. Characterization of a new catechol branch of the beta-ketoadipate pathway induced for benzoate degradation in Acinetobacter lwoffii K24.
    Yoon YH; Yun SH; Park SH; Seol SY; Leem SH; Kim SI
    Biochem Biophys Res Commun; 2007 Aug; 360(3):513-9. PubMed ID: 17610839
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering E. coli-E. coli cocultures for production of muconic acid from glycerol.
    Zhang H; Li Z; Pereira B; Stephanopoulos G
    Microb Cell Fact; 2015 Sep; 14():134. PubMed ID: 26369810
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cloning and expression of catA gene from Pseudomonas putida ND6 and study on the catechol cleavage pathway].
    Zhao HB; Chen W; Cai BL
    Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):387-91. PubMed ID: 17672292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosensor-Enabled Directed Evolution to Improve Muconic Acid Production in Saccharomyces cerevisiae.
    Leavitt JM; Wagner JM; Tu CC; Tong A; Liu Y; Alper HS
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28296355
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants.
    Lin J; Milase RN
    Protein J; 2015 Dec; 34(6):421-33. PubMed ID: 26563518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biodegradation of 3-nitrotoluene by Rhodococcus sp. strain ZWL3NT.
    Tian XJ; Liu XY; Liu H; Wang SJ; Zhou NY
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):9217-23. PubMed ID: 23250222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of cis-cis muconic acid in the catalysis of Pseudomonas putida chlorocatechol 1,2-dioxygenase.
    Melo FA; Araújo AP; Costa-Filho AJ
    Int J Biol Macromol; 2010 Aug; 47(2):233-7. PubMed ID: 20452370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Muconic Acid Production Using Gene-Level Fusion Proteins in Escherichia coli.
    Fujiwara R; Noda S; Tanaka T; Kondo A
    ACS Synth Biol; 2018 Nov; 7(11):2698-2705. PubMed ID: 30350569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catechol 1,2-Dioxygenase From
    Aravind MK; Varalakshmi P; John SA; Ashokkumar B
    Front Bioeng Biotechnol; 2021; 9():703399. PubMed ID: 34790650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of phenol biodegradation pathways in three psychrotolerant yeasts, Candida subhashii A01
    Filipowicz N; Momotko M; Boczkaj G; Cieśliński H
    Enzyme Microb Technol; 2020 Nov; 141():109663. PubMed ID: 33051016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of medium composition for cis,cis-muconic acid production by a Pseudomonas sp. mutant using statistical methods.
    Xie NZ; Wang QY; Zhu QX; Qin Y; Tao F; Huang RB; Xu P
    Prep Biochem Biotechnol; 2014; 44(4):342-54. PubMed ID: 24320235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fine-tuning of catalytic properties of catechol 1,2-dioxygenase by active site tailoring.
    Caglio R; Valetti F; Caposio P; Gribaudo G; Pessione E; Giunta C
    Chembiochem; 2009 Apr; 10(6):1015-24. PubMed ID: 19301316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Constitutive expression of catABC genes in the aniline-assimilating bacterium Rhodococcus species AN-22: production, purification, characterization and gene analysis of CatA, CatB and CatC.
    Matsumura E; Sakai M; Hayashi K; Murakami S; Takenaka S; Aoki K
    Biochem J; 2006 Jan; 393(Pt 1):219-26. PubMed ID: 16156722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improvement of
    Wang G; Øzmerih S; Guerreiro R; Meireles AC; Carolas A; Milne N; Jensen MK; Ferreira BS; Borodina I
    ACS Synth Biol; 2020 Mar; 9(3):634-646. PubMed ID: 32058699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rational engineering of p-hydroxybenzoate hydroxylase to enable efficient gallic acid synthesis via a novel artificial biosynthetic pathway.
    Chen Z; Shen X; Wang J; Wang J; Yuan Q; Yan Y
    Biotechnol Bioeng; 2017 Nov; 114(11):2571-2580. PubMed ID: 28650068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae.
    Weber C; Brückner C; Weinreb S; Lehr C; Essl C; Boles E
    Appl Environ Microbiol; 2012 Dec; 78(23):8421-30. PubMed ID: 23001678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus.
    Neidle EL; Ornston LN
    J Bacteriol; 1987 Jan; 169(1):414-5. PubMed ID: 3793718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological production of muconic acid via a prokaryotic 2,3-dihydroxybenzoic acid decarboxylase.
    Sun X; Lin Y; Yuan Q; Yan Y
    ChemSusChem; 2014 Sep; 7(9):2478-81. PubMed ID: 25045104
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expression and cloning of
    Han L; Chen S; Zhou J
    Prep Biochem Biotechnol; 2020; 50(5):486-493. PubMed ID: 31900038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.