BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 26306950)

  • 1. Role of claudins in renal calcium handling.
    Negri AL
    Nefrologia; 2015; 35(4):347-52. PubMed ID: 26306950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticomedullary difference in the effects of dietary Ca²⁺ on tight junction properties in thick ascending limbs of Henle's loop.
    Plain A; Wulfmeyer VC; Milatz S; Klietz A; Hou J; Bleich M; Himmerkus N
    Pflugers Arch; 2016 Feb; 468(2):293-303. PubMed ID: 26497703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and regulation of claudins in the thick ascending limb of Henle.
    Günzel D; Yu AS
    Pflugers Arch; 2009 May; 458(1):77-88. PubMed ID: 18795318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of claudins in idiopathic hypercalciuria and renal lithiasis.
    Negri AL; Del Valle EE
    Int Urol Nephrol; 2022 Sep; 54(9):2197-2204. PubMed ID: 35084652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis.
    Breiderhoff T; Himmerkus N; Stuiver M; Mutig K; Will C; Meij IC; Bachmann S; Bleich M; Willnow TE; Müller D
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14241-6. PubMed ID: 22891322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Claudin-19 mediates the effects of NO on the paracellular pathway in thick ascending limbs.
    Monzon CM; Garvin JL
    Am J Physiol Renal Physiol; 2019 Aug; 317(2):F411-F418. PubMed ID: 31166708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport.
    Milatz S; Himmerkus N; Wulfmeyer VC; Drewell H; Mutig K; Hou J; Breiderhoff T; Müller D; Fromm M; Bleich M; Günzel D
    Proc Natl Acad Sci U S A; 2017 Jan; 114(2):E219-E227. PubMed ID: 28028216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Claudin-14 underlies Ca⁺⁺-sensing receptor-mediated Ca⁺⁺ metabolism via NFAT-microRNA-based mechanisms.
    Gong Y; Hou J
    J Am Soc Nephrol; 2014 Apr; 25(4):745-60. PubMed ID: 24335970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction between Epithelial Sodium Channel
    Sassi A; Wang Y; Chassot A; Komarynets O; Roth I; Olivier V; Crambert G; Dizin E; Boscardin E; Hummler E; Feraille E
    J Am Soc Nephrol; 2020 May; 31(5):1009-1023. PubMed ID: 32245797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Claudins in barrier and transport function-the kidney.
    Gong Y; Hou J
    Pflugers Arch; 2017 Jan; 469(1):105-113. PubMed ID: 27878608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restricted localization of claudin-16 at the tight junction in the thick ascending limb of Henle's loop together with claudins 3, 4, and 10 in bovine nephrons.
    Ohta H; Adachi H; Takiguchi M; Inaba M
    J Vet Med Sci; 2006 May; 68(5):453-63. PubMed ID: 16757888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paracellular transport and energy utilization in the renal tubule.
    Yu ASL
    Curr Opin Nephrol Hypertens; 2017 Sep; 26(5):398-404. PubMed ID: 28617689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Claudins and the kidney.
    Hou J; Rajagopal M; Yu AS
    Annu Rev Physiol; 2013; 75():479-501. PubMed ID: 23140368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Claudins and mineral metabolism.
    Hou J
    Curr Opin Nephrol Hypertens; 2016 Jul; 25(4):308-13. PubMed ID: 27191348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Claudins 6, 9, and 13 are developmentally expressed renal tight junction proteins.
    Abuazza G; Becker A; Williams SS; Chakravarty S; Truong HT; Lin F; Baum M
    Am J Physiol Renal Physiol; 2006 Dec; 291(6):F1132-41. PubMed ID: 16774906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria.
    Breiderhoff T; Himmerkus N; Drewell H; Plain A; Günzel D; Mutig K; Willnow TE; Müller D; Bleich M
    Kidney Int; 2018 Mar; 93(3):580-588. PubMed ID: 29129401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lecture: New light on the role of claudins in the kidney.
    Hou J
    Organogenesis; 2012; 8(1):1-9. PubMed ID: 22504740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thick ascending limb claudins are altered to increase calciuria and magnesiuria in metabolic acidosis.
    Oh IH; Jo CH; Kim S; Jo S; Chung S; Kim GH
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F418-F428. PubMed ID: 33522409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway.
    Gong Y; Renigunta V; Himmerkus N; Zhang J; Renigunta A; Bleich M; Hou J
    EMBO J; 2012 Apr; 31(8):1999-2012. PubMed ID: 22373575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Claudin-16 and claudin-19 function in the thick ascending limb.
    Hou J; Goodenough DA
    Curr Opin Nephrol Hypertens; 2010 Sep; 19(5):483-8. PubMed ID: 20616717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.