BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 26307148)

  • 1. Controllable high-throughput high-quality femtosecond laser-enhanced chemical etching by temporal pulse shaping based on electron density control.
    Zhao M; Hu J; Jiang L; Zhang K; Liu P; Lu Y
    Sci Rep; 2015 Aug; 5():13202. PubMed ID: 26307148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching.
    Wang Z; Jiang L; Li X; Wang A; Yao Z; Zhang K; Lu Y
    Opt Lett; 2018 Jan; 43(1):98-101. PubMed ID: 29328212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Etching rate enhancement by shaped femtosecond pulse train electron dynamics control for microchannels fabrication in fused silica glass.
    Liu P; Jiang L; Hu J; Yan X; Xia B; Lu Y
    Opt Lett; 2013 Nov; 38(22):4613-6. PubMed ID: 24322087
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarization-independent etching of fused silica based on electrons dynamics control by shaped femtosecond pulse trains for microchannel fabrication.
    Yan X; Jiang L; Li X; Zhang K; Xia B; Liu P; Qu L; Lu Y
    Opt Lett; 2014 Sep; 39(17):5240-3. PubMed ID: 25166119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput rear-surface drilling of microchannels in glass based on electron dynamics control using femtosecond pulse trains.
    Jiang L; Liu P; Yan X; Leng N; Xu C; Xiao H; Lu Y
    Opt Lett; 2012 Jul; 37(14):2781-3. PubMed ID: 22825132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application.
    Jiang L; Wang AD; Li B; Cui TH; Lu YF
    Light Sci Appl; 2018; 7():17134. PubMed ID: 30839523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method.
    Chen F; Liu H; Yang Q; Wang X; Hou C; Bian H; Liang W; Si J; Hou X
    Opt Express; 2010 Sep; 18(19):20334-43. PubMed ID: 20940925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fused silica ablation by double femtosecond laser pulses: influence of polarization state.
    Gaudfrin K; Lopez J; Mishchik K; Gemini L; Kling R; Duchateau G
    Opt Express; 2020 May; 28(10):15189-15206. PubMed ID: 32403551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanofabrication of tailored surface structures in dielectrics using temporally shaped femtosecond-laser pulses.
    Hernandez-Rueda J; Götte N; Siegel J; Soccio M; Zielinski B; Sarpe C; Wollenhaupt M; Ezquerra TA; Baumert T; Solis J
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6613-9. PubMed ID: 25762003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable formation of laser-induced periodic surface structures on ZnO film by temporally shaped femtosecond laser scanning.
    Wang S; Jiang L; Han W; Liu W; Hu J; Wang S; Lu Y
    Opt Lett; 2020 Apr; 45(8):2411-2414. PubMed ID: 32287246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production rate enhancement of size-tunable silicon nanoparticles by temporally shaping femtosecond laser pulses in ethanol.
    Li X; Zhang G; Jiang L; Shi X; Zhang K; Rong W; Duan J; Lu Y
    Opt Express; 2015 Feb; 23(4):4226-32. PubMed ID: 25836460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser induced periodic surface structuring on Si by temporal shaped femtosecond pulses.
    Almeida GF; Martins RJ; Otuka AJ; Siqueira JP; Mendonca CR
    Opt Express; 2015 Oct; 23(21):27597-605. PubMed ID: 26480419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical etching of fused silica after modification with two-pulse bursts of femtosecond laser.
    Stankevič V; Račiukaitis G; Gečys P
    Opt Express; 2021 Sep; 29(20):31393-31407. PubMed ID: 34615232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adjustments of dielectrics craters and their surfaces by ultrafast laser pulse train based on localized electron dynamics control.
    Yuan Y; Jiang L; Li X; Wang C; Yuan L; Qu L; Lu Y
    Appl Opt; 2013 Jun; 52(17):4035-41. PubMed ID: 23759853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of Etching Anisotropy in Fused Silica by Double-Pulse Fabrication.
    Stankevič V; Karosas J; Račiukaitis G; Gečys P
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32397123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of microlenses with continuously variable numerical aperture through a temporally shaped femtosecond laser.
    Qin B; Li X; Yao Z; Huang J; Liu Y; Wang A; Gao S; Zhou S; Wang Z
    Opt Express; 2021 Feb; 29(3):4596-4606. PubMed ID: 33771033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering.
    Jiang L; Ying D; Li X; Lu Y
    Opt Lett; 2012 Sep; 37(17):3648-50. PubMed ID: 22940978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining.
    Rezaei S; Li J; Herman PR
    Opt Lett; 2015 May; 40(9):2064-7. PubMed ID: 25927785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations of femtosecond-nanosecond dual-beam laser ablation of dielectrics.
    Lin CH; Rao ZH; Jiang L; Tsai WJ; Wu PH; Chien CW; Chen SJ; Tsai HL
    Opt Lett; 2010 Jul; 35(14):2490-2. PubMed ID: 20634873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid fabrication of large-area concave microlens arrays on silica glasses by femtosecond laser bursts.
    Wang Q; Yang S; Yang Z; Duan J; Xiong W; Deng L
    Opt Lett; 2022 Aug; 47(15):3936-3939. PubMed ID: 35913352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.