BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26307536)

  • 1. Regulation of mitochondrial morphology and cell cycle by microRNA-214 targeting Mitofusin2.
    Bucha S; Mukhopadhyay D; Bhattacharyya NP
    Biochem Biophys Res Commun; 2015 Oct; 465(4):797-802. PubMed ID: 26307536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of overexpression of huntingtin proteins on mitochondrial integrity.
    Wang H; Lim PJ; Karbowski M; Monteiro MJ
    Hum Mol Genet; 2009 Feb; 18(4):737-52. PubMed ID: 19039036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.
    Shirendeb U; Reddy AP; Manczak M; Calkins MJ; Mao P; Tagle DA; Reddy PH
    Hum Mol Genet; 2011 Apr; 20(7):1438-55. PubMed ID: 21257639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitochondrial protein import by mutant huntingtin.
    Yano H; Baranov SV; Baranova OV; Kim J; Pan Y; Yablonska S; Carlisle DL; Ferrante RJ; Kim AH; Friedlander RM
    Nat Neurosci; 2014 Jun; 17(6):822-31. PubMed ID: 24836077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh(Q111)/Hdh(Q111) cells.
    Das E; Jana NR; Bhattacharyya NP
    Biochem Biophys Res Commun; 2013 Jul; 437(2):217-24. PubMed ID: 23796713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability.
    Fu Z; Liu F; Liu C; Jin B; Jiang Y; Tang M; Qi X; Guo X
    Biochim Biophys Acta Mol Basis Dis; 2019 Jun; 1865(6):1428-1435. PubMed ID: 30802639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease.
    Ghose J; Sinha M; Das E; Jana NR; Bhattacharyya NP
    PLoS One; 2011; 6(8):e23837. PubMed ID: 21887328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3) has a key role in the mitochondrial dysfunction induced by mutant huntingtin.
    Sassone F; Margulets V; Maraschi A; Rodighiero S; Passafaro M; Silani V; Ciammola A; Kirshenbaum LA; Sassone J
    Hum Mol Genet; 2015 Nov; 24(22):6530-9. PubMed ID: 26358776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro RNA -214,-150,-146a and-125b target Huntingtin gene.
    Sinha M; Ghose J; Bhattarcharyya NP
    RNA Biol; 2011; 8(6):1005-21. PubMed ID: 22048026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease.
    Shirendeb UP; Calkins MJ; Manczak M; Anekonda V; Dufour B; McBride JL; Mao P; Reddy PH
    Hum Mol Genet; 2012 Jan; 21(2):406-20. PubMed ID: 21997870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed Cell Cycle Progression in STHdh(Q111)/Hdh(Q111) Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432.
    Das E; Jana NR; Bhattacharyya NP
    Microrna; 2015; 4(2):86-100. PubMed ID: 26165466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms.
    Jovicic A; Zaldivar Jolissaint JF; Moser R; Silva Santos Mde F; Luthi-Carter R
    PLoS One; 2013; 8(1):e54222. PubMed ID: 23349832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered microRNA regulation in Huntington's disease models.
    Lee ST; Chu K; Im WS; Yoon HJ; Im JY; Park JE; Park KH; Jung KH; Lee SK; Kim M; Roh JK
    Exp Neurol; 2011 Jan; 227(1):172-9. PubMed ID: 21035445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics of Huntington's disease-affected human embryonic stem cells reveals an evolving pathology involving mitochondrial dysfunction and metabolic disturbances.
    McQuade LR; Balachandran A; Scott HA; Khaira S; Baker MS; Schmidt U
    J Proteome Res; 2014 Dec; 13(12):5648-59. PubMed ID: 25316320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.
    Kim J; Moody JP; Edgerly CK; Bordiuk OL; Cormier K; Smith K; Beal MF; Ferrante RJ
    Hum Mol Genet; 2010 Oct; 19(20):3919-35. PubMed ID: 20660112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington's disease.
    Yin X; Manczak M; Reddy PH
    Hum Mol Genet; 2016 May; 25(9):1739-53. PubMed ID: 26908605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.
    Jin YN; Yu YV; Gundemir S; Jo C; Cui M; Tieu K; Johnson GV
    PLoS One; 2013; 8(3):e57932. PubMed ID: 23469253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of differentially expressed genes and regulatory relationships in Huntington's disease by bioinformatics analysis.
    Dong X; Cong S
    Mol Med Rep; 2018 Mar; 17(3):4317-4326. PubMed ID: 29328442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel proteomic changes in brain mitochondria provide insights into mitochondrial dysfunction in mouse models of Huntington's disease.
    Agrawal S; Fox JH
    Mitochondrion; 2019 Jul; 47():318-329. PubMed ID: 30902619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Down-regulation of miR-9* in the peripheral leukocytes of Huntington's disease patients.
    Chang KH; Wu YR; Chen CM
    Orphanet J Rare Dis; 2017 Dec; 12(1):185. PubMed ID: 29258536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.