BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 26307639)

  • 1. Review: advances in in situ and satellite phenological observations in Japan.
    Nagai S; Nasahara KN; Inoue T; Saitoh TM; Suzuki R
    Int J Biometeorol; 2016 Apr; 60(4):615-27. PubMed ID: 26307639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shifting and extension of phenological periods with increasing temperature along elevational transects in southern Bavaria.
    Schuster C; Estrella N; Menzel A
    Plant Biol (Stuttg); 2014 Mar; 16(2):332-44. PubMed ID: 23957276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-surface remote sensing of spatial and temporal variation in canopy phenology.
    Richardson AD; Braswell BH; Hollinger DY; Jenkins JP; Ollinger SV
    Ecol Appl; 2009 Sep; 19(6):1417-28. PubMed ID: 19769091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-scale phenological monitoring in forest ecosystems: a content-analysis-based review.
    Reyes-González ER; Gómez-Mendoza L; Barradas VL; Terán-Cuevas ÁR
    Int J Biometeorol; 2021 Dec; 65(12):2215-2227. PubMed ID: 34313850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing.
    Chapman DS
    Glob Chang Biol; 2013 Nov; 19(11):3463-71. PubMed ID: 23661383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.
    Suepa T; Qi J; Lawawirojwong S; Messina JP
    Environ Res; 2016 May; 147():621-9. PubMed ID: 26922262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global increase in tree cover extends the growing season length as observed from satellite records.
    Fang Z; Brandt M; Wang L; Fensholt R
    Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Pheno-climatic profiles of vegetation based on multitemporal analysis of satellite data].
    Taddei R
    Parassitologia; 2004 Jun; 46(1-2):63-6. PubMed ID: 15305688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking seasonal rhythms of plants in diverse ecosystems with digital camera imagery.
    Richardson AD
    New Phytol; 2019 Jun; 222(4):1742-1750. PubMed ID: 30415486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant ecophysiological processes in spectral profiles: perspective from a deciduous broadleaf forest.
    Noda HM; Muraoka H; Nasahara KN
    J Plant Res; 2021 Jul; 134(4):737-751. PubMed ID: 33970379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking forest phenology and seasonal physiology using digital repeat photography: a critical assessment.
    Keenan TF; Darby B; Felts E; Sonnentag O; Friedl MA; Hufkens K; O'Keef J; Klosterman S; Munger JW; Toome M; Richardson AD
    Ecol Appl; 2014; 24(6):1478-89. PubMed ID: 29160668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Application of near-surface remote sensing in monitoring the dynamics of forest canopy phenology.].
    Liu F; Wang CK; Wang XC
    Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1768-1778. PubMed ID: 29974684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards an Automated Approach for Monitoring Tree Phenology Using Vehicle Dashcams in Urban Environments.
    Boyd DS; Crudge S; Foody G
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery.
    Richardson AD; Hufkens K; Milliman T; Aubrecht DM; Chen M; Gray JM; Johnston MR; Keenan TF; Klosterman ST; Kosmala M; Melaas EK; Friedl MA; Frolking S
    Sci Data; 2018 Mar; 5():180028. PubMed ID: 29533393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Extraction of temperate vegetation phenology thresholds in North America based on flux tower observation data].
    Zhao JJ; Liu LY
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):311-8. PubMed ID: 23705372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating autumn phenology derived from field observations, satellite data, and carbon flux measurements in a northern mixed forest, USA.
    Zhao B; Donnelly A; Schwartz MD
    Int J Biometeorol; 2020 May; 64(5):713-727. PubMed ID: 32072321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Variation of satellite-based spring vegetation phenology and the relationship with climate in the Northern Hemisphere over 1982 to 2009.].
    Cong N; Shen MG
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2737-2746. PubMed ID: 29732834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability and evolution of global land surface phenology over the past three decades (1982-2012).
    Garonna I; de Jong R; Schaepman ME
    Glob Chang Biol; 2016 Apr; 22(4):1456-68. PubMed ID: 26924776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New satellite-based estimates show significant trends in spring phenology and complex sensitivities to temperature and precipitation at northern European latitudes.
    Jin H; Jönsson AM; Olsson C; Lindström J; Jönsson P; Eklundh L
    Int J Biometeorol; 2019 Jun; 63(6):763-775. PubMed ID: 30805728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.