These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

424 related articles for article (PubMed ID: 26308010)

  • 21. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera.
    Jung HA; Islam MN; Lee CM; Oh SH; Lee S; Jung JH; Choi JS
    Chem Biol Interact; 2013 Oct; 206(1):55-62. PubMed ID: 23994501
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coumarins from Angelica decursiva inhibit α-glucosidase activity and protein tyrosine phosphatase 1B.
    Ali MY; Jannat S; Jung HA; Jeong HO; Chung HY; Choi JS
    Chem Biol Interact; 2016 May; 252():93-101. PubMed ID: 27085377
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cardiovascular effects of dipeptidyl peptidase-4 inhibitors: from risk factors to clinical outcomes.
    Scheen AJ
    Postgrad Med; 2013 May; 125(3):7-20. PubMed ID: 23748503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Albiglutide: Is a better hope against diabetes mellitus?
    Sharma AK; Thanikachalam PV; Rajput SK
    Biomed Pharmacother; 2016 Feb; 77():120-8. PubMed ID: 26796275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dipeptidyl peptidase IV inhibitors and the incretin system in type 2 diabetes mellitus.
    Langley AK; Suffoletta TJ; Jennings HR
    Pharmacotherapy; 2007 Aug; 27(8):1163-80. PubMed ID: 17655515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes.
    Havale SH; Pal M
    Bioorg Med Chem; 2009 Mar; 17(5):1783-802. PubMed ID: 19217790
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential impact of dipeptidyl peptidase-4 inhibitors on cardiovascular pathophysiology in type 2 diabetes mellitus.
    Davidson MH
    Postgrad Med; 2014 May; 126(3):56-65. PubMed ID: 24918792
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfated galactofucan from seaweed
    Antony T; Chakraborty K; Dhara S
    Nat Prod Res; 2022 Dec; 36(24):6240-6251. PubMed ID: 35037546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Systematic Review on Anti-diabetic Properties of Chalcones.
    Rocha S; Ribeiro D; Fernandes E; Freitas M
    Curr Med Chem; 2020; 27(14):2257-2321. PubMed ID: 30277140
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential chemistry (structure), mechanism of action, and pharmacology of GLP-1 receptor agonists and DPP-4 inhibitors.
    Neumiller JJ
    J Am Pharm Assoc (2003); 2009; 49 Suppl 1():S16-29. PubMed ID: 19801361
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Beneficial effects of vildagliptin combined with miglitol on glucose tolerance and islet morphology in diet-controlled db/db mice.
    Ishibashi K; Hara A; Fujitani Y; Uchida T; Komiya K; Tamaki M; Abe H; Ogihara T; Kanazawa A; Kawamori R; Watada H
    Biochem Biophys Res Commun; 2013 Nov; 440(4):570-5. PubMed ID: 24103756
    [TBL] [Abstract][Full Text] [Related]  

  • 32. beta-cell failure in diabetes and preservation by clinical treatment.
    Wajchenberg BL
    Endocr Rev; 2007 Apr; 28(2):187-218. PubMed ID: 17353295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incretin mimetics and DPP-4 inhibitors: new approach to treatment of type 2 diabetes mellitus.
    Siddiqui NI
    Mymensingh Med J; 2009 Jan; 18(1):113-24. PubMed ID: 19182763
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of vildagliptin in managing type 2 diabetes mellitus in the elderly.
    Halimi S; Raccah D; Schweizer A; Dejager S
    Curr Med Res Opin; 2010 Jul; 26(7):1647-56. PubMed ID: 20441397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms of Cardiovascular Injury in Type 2 Diabetes and Potential Effects of Dipeptidyl Peptidase-4 Inhibition.
    Dokken B
    J Cardiovasc Nurs; 2016; 31(3):274-83. PubMed ID: 25829138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Type 2 Diabetes Mellitus: A Review of Multi-Target Drugs.
    Artasensi A; Pedretti A; Vistoli G; Fumagalli L
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340373
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes.
    Green BD; Flatt PR; Bailey CJ
    Diab Vasc Dis Res; 2006 Dec; 3(3):159-65. PubMed ID: 17160910
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Focus on incretin-based therapies: targeting the core defects of type 2 diabetes.
    Jellinger PS
    Postgrad Med; 2011 Jan; 123(1):53-65. PubMed ID: 21293084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets.
    He JH; Chen LX; Li H
    Fitoterapia; 2019 Apr; 134():270-289. PubMed ID: 30840917
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent patents of dipeptidyl peptidase IV inhibitors.
    Mendieta L; Tarrago T; Giralt E
    Expert Opin Ther Pat; 2011 Nov; 21(11):1693-741. PubMed ID: 22017411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.