BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26308017)

  • 21. Wide Swath Stereo Mapping from Gaofen-1 Wide-Field-View (WFV) Images Using Calibration.
    Chen S; Liu J; Huang W; Chen R
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29494540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products.
    Zheng Y; Wu B; Zhang M; Zeng H
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27973404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forest tree species identification and its response to spatial scale based on multispectral and multi-resolution remotely sensed data.
    Xu KJ; Tian QJ; Yue JB; Tang SF
    Ying Yong Sheng Tai Xue Bao; 2018 Dec; 29(12):3986-3994. PubMed ID: 30584725
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].
    Du JQ; Shu JM; Wang YH; Li YC; Zhang LB; Guo Y
    Ying Yong Sheng Tai Xue Bao; 2014 Feb; 25(2):533-44. PubMed ID: 24830255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.
    Zhang P; Chen X; Lu J; Zhang W
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18779-92. PubMed ID: 26199002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of rice phenology date using integrated HJ-1 CCD and Landsat-8 OLI vegetation indices time-series images.
    Wang J; Huang JF; Wang XZ; Jin MT; Zhou Z; Guo QY; Zhao ZW; Huang WJ; Zhang Y; Song XD
    J Zhejiang Univ Sci B; 2015 Oct; 16(10):832-44. PubMed ID: 26465131
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Atmospheric Correction of Satellite GF-1/WFV Imagery and Quantitative Estimation of Suspended Particulate Matter in the Yangtze Estuary.
    Shang P; Shen F
    Sensors (Basel); 2016 Nov; 16(12):. PubMed ID: 27897987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.
    Skakun S; Justice CO; Vermote E; Roger JC
    Int J Remote Sens; 2018; 39(4):971-992. PubMed ID: 29892137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Remote sensing monitoring of land damage and restoration in rare earth mining areas in 6 counties in southern Jiangxi based on multisource sequential images.
    Hengkai L; Feng X; Qin L
    J Environ Manage; 2020 Aug; 267():110653. PubMed ID: 32364134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Monitoring forest dynamics with multi-scale and time series imagery.
    Huang C; Zhou Z; Wang D; Dian Y
    Environ Monit Assess; 2016 May; 188(5):273. PubMed ID: 27056478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.
    Wang F; Qin Z; Li W; Song C; Karnieli A; Zhao S
    Sensors (Basel); 2014 Dec; 15(1):304-30. PubMed ID: 25609048
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Daily Spatial Complete Soil Moisture Mapping Over Southeast China Using CYGNSS and MODIS Data.
    Yang T; Sun Z; Wang J; Li S
    Front Big Data; 2021; 4():777336. PubMed ID: 35243338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data.
    Patel NR; Parida BR; Venus V; Saha SK; Dadhwal VK
    Environ Monit Assess; 2012 Dec; 184(12):7153-63. PubMed ID: 22200944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anopheles atroparvus density modeling using MODIS NDVI in a former malarious area in Portugal.
    Lourenço PM; Sousa CA; Seixas J; Lopes P; Novo MT; Almeida AP
    J Vector Ecol; 2011 Dec; 36(2):279-91. PubMed ID: 22129399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial scales of pollution from variable resolution satellite imaging.
    Chudnovsky AA; Kostinski A; Lyapustin A; Koutrakis P
    Environ Pollut; 2013 Jan; 172():131-8. PubMed ID: 23026774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Classification of Rice Heavy Metal Stress Levels Based on Phenological Characteristics Using Remote Sensing Time-Series Images and Data Mining Algorithms.
    Liu T; Liu X; Liu M; Wu L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30558149
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative Analysis of GF-1 and HJ-1 Data to Derive the Optimal Scale for Monitoring Heavy Metal Stress in Rice.
    Wang D; Liu X
    Int J Environ Res Public Health; 2018 Mar; 15(3):. PubMed ID: 29509724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Satellite observations and modeling of oil spill trajectories in the Bohai Sea.
    Xu Q; Li X; Wei Y; Tang Z; Cheng Y; Pichel WG
    Mar Pollut Bull; 2013 Jun; 71(1-2):107-16. PubMed ID: 23618498
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Extraction Model of Paddy Rice Information Based on GF-1 Satellite WFV Images.
    Yang YJ; Huang Y; Tian QJ; Wang L; Geng J; Yang RR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3255-61. PubMed ID: 26978945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-Year Mapping of Major Crop Yields in an Irrigation District from High Spatial and Temporal Resolution Vegetation Index.
    Yu B; Shang S
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30404139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.