BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26308098)

  • 1. Highly Efficient Dual-Color Electrochemiluminescence from BODIPY-Capped PbS Nanocrystals.
    Hesari M; Swanick KN; Lu JS; Whyte R; Wang S; Ding Z
    J Am Chem Soc; 2015 Sep; 137(35):11266-9. PubMed ID: 26308098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Grand Avenue to Au Nanocluster Electrochemiluminescence.
    Hesari M; Ding Z
    Acc Chem Res; 2017 Feb; 50(2):218-230. PubMed ID: 28080028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Electrochemiluminescence from a Stoichiometric Ruthenium(II)-Iridium(III) Complex Soft Salt.
    Swanick KN; Sandroni M; Ding Z; Zysman-Colman E
    Chemistry; 2015 May; 21(20):7435-40. PubMed ID: 25735656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling Adsorption of Boron Dipyrromethene Conjugated PbS Nanocrystals on Pt Electrode Surface: An Approach Using Electrogenerated Chemiluminescence Spooling Spectra and Multivariate Analysis.
    Bagheri S; Valenti G; Kompany-Zareh M
    J Phys Chem A; 2019 Mar; 123(11):2171-2177. PubMed ID: 30803227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient electrogenerated chemiluminescence of Au38 nanoclusters.
    Hesari M; Workentin MS; Ding Z
    ACS Nano; 2014 Aug; 8(8):8543-53. PubMed ID: 25088234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive immunoassay based on anodic near-infrared electrochemiluminescence from dual-stabilizer-capped CdTe nanocrystals.
    Liang G; Liu S; Zou G; Zhang X
    Anal Chem; 2012 Dec; 84(24):10645-9. PubMed ID: 23163822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and kinetic origins of Au25(0) nanocluster electrochemiluminescence.
    Hesari M; Workentin MS; Ding Z
    Chemistry; 2014 Nov; 20(46):15116-21. PubMed ID: 25263693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient electrochemiluminescence of a boron-dipyrromethene (BODIPY) dye.
    Hesari M; Lu JS; Wang S; Ding Z
    Chem Commun (Camb); 2015 Jan; 51(6):1081-4. PubMed ID: 25445740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient electrochemiluminescence of a readily accessible boron difluoride formazanate dye.
    Hesari M; Barbon SM; Staroverov VN; Ding Z; Gilroy JB
    Chem Commun (Camb); 2015 Mar; 51(18):3766-9. PubMed ID: 25646662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic Precision Graphene Model Compound for Bright Electrochemiluminescence and Organic Light-Emitting Diodes.
    Yang L; Hendsbee AD; Xue Q; He S; De-Jager CR; Xie G; Welch GC; Ding Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51736-51743. PubMed ID: 33155464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and ECL performance of highly efficient bimetallic ruthenium tris-bipyridyl complexes.
    Sun S; Li F; Liu F; Yang X; Fan J; Song F; Sun L; Peng X
    Dalton Trans; 2012 Oct; 41(40):12434-8. PubMed ID: 22945764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two orders-of-magnitude enhancement in the electrochemiluminescence of Ru(bpy)₃²⁺ by vertically ordered silica mesochannels.
    Zhou Z; Guo W; Xu L; Yang Q; Su B
    Anal Chim Acta; 2015 Jul; 886():48-55. PubMed ID: 26320635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemiluminescence of Ru(II) complexes immobilized on a magnetic microbead surface: distribution of magnetic microbeads on the electrode surface and effect of azide ion.
    Komori K; Takada K; Hatozaki O; Oyama N
    Langmuir; 2007 May; 23(11):6446-52. PubMed ID: 17439254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Near-Infrared Electrochemiluminescence from Au
    Hesari M; Ding Z
    Chemistry; 2021 Oct; 27(60):14821-14825. PubMed ID: 34543484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap engineered and high monochromatic electrochemiluminescence from dual-stabilizers-capped CdSe nanocrystals with practical application potential.
    Liu S; Zhang X; Yu Y; Zou G
    Biosens Bioelectron; 2014 May; 55():203-8. PubMed ID: 24384260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ activation of CdS electrochemiluminescence film and its application in H₂S detection.
    Zhang YY; Zhou H; Wu P; Zhang HR; Xu JJ; Chen HY
    Anal Chem; 2014 Sep; 86(17):8657-64. PubMed ID: 25096242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-selected and surface-passivated CsPbBr
    Cao Y; Zhu W; Li L; Zhang Z; Chen Z; Lin Y; Zhu JJ
    Nanoscale; 2020 Apr; 12(13):7321-7329. PubMed ID: 32202287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale-enhanced Ru(bpy)3(2+) electrochemiluminescence labels and related aptamer-based biosensing system.
    Guo W; Yuan J; Li B; Du Y; Ying E; Wang E
    Analyst; 2008 Sep; 133(9):1209-13. PubMed ID: 18709196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient quenching of coreactant electrogenerated chemiluminescence by phenolic compounds.
    Zheng H; Zu Y
    J Phys Chem B; 2005 Aug; 109(33):16047-51. PubMed ID: 16853038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenching of the electrochemiluminescence of tris(2,2'-bipyridine)ruthenium(II)/tri-n-propylamine by pristine carbon nanotube and its application to quantitative detection of DNA.
    Tang X; Zhao D; He J; Li F; Peng J; Zhang M
    Anal Chem; 2013 Feb; 85(3):1711-8. PubMed ID: 23311854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.