These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 26308099)

  • 1. In Situ Detection of Subsurface Biofilm Using Low-Field NMR: A Field Study.
    Kirkland CM; Herrling MP; Hiebert R; Bender AT; Grunewald E; Walsh DO; Codd SL
    Environ Sci Technol; 2015 Sep; 49(18):11045-52. PubMed ID: 26308099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biofilm detection in natural unconsolidated porous media using a low-field magnetic resonance system.
    Sanderlin AB; Vogt SJ; Grunewald E; Bergin BA; Codd SL
    Environ Sci Technol; 2013 Jan; 47(2):987-92. PubMed ID: 23256613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR.
    Kirkland CM; Zanetti S; Grunewald E; Walsh DO; Codd SL; Phillips AJ
    Environ Sci Technol; 2017 Feb; 51(3):1537-1543. PubMed ID: 27997145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective imaging of biofilms in porous media by NMR relaxation.
    Hoskins BC; Fevang L; Majors PD; Sharma MM; Georgiou G
    J Magn Reson; 1999 Jul; 139(1):67-73. PubMed ID: 10388585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability of a growing biofilm in a porous media fluid flow analyzed by magnetic resonance displacement-relaxation correlations.
    Vogt SJ; Sanderlin AB; Seymour JD; Codd SL
    Biotechnol Bioeng; 2013 May; 110(5):1366-75. PubMed ID: 23239390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groundwater biofilm dynamics grown in situ along a nutrient gradient.
    Williamson WM; Close ME; Leonard MM; Webber JB; Lin S
    Ground Water; 2012; 50(5):690-703. PubMed ID: 22220932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Field Nuclear Magnetic Resonance Characteristics of Biofilm Development Process.
    Zhang Y; Lin Y; Lv X; Xu A; Feng C; Lin J
    Microorganisms; 2021 Nov; 9(12):. PubMed ID: 34946068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMR measurement of hydrodynamic dispersion in porous media subject to biofilm mediated precipitation reactions.
    Fridjonsson EO; Seymour JD; Schultz LN; Gerlach R; Cunningham AB; Codd SL
    J Contam Hydrol; 2011 Mar; 120-121():79-88. PubMed ID: 20800317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations.
    Kwon MJ; O'Loughlin EJ; Ham B; Hwang Y; Shim M; Lee S
    J Environ Manage; 2018 Jan; 206():938-948. PubMed ID: 29220820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm resilience to desiccation in groundwater aquifers: a laboratory and field study.
    Weaver L; Webber JB; Hickson AC; Abraham PM; Close ME
    Sci Total Environ; 2015 May; 514():281-9. PubMed ID: 25668280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilization of microbial biofilms as monitors of bioremediation.
    Peacock AD; Chang YJ; Istok JD; Krumholz L; Geyer R; Kinsall B; Watson D; Sublette KL; White DC
    Microb Ecol; 2004 Apr; 47(3):284-92. PubMed ID: 14994174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A small-diameter NMR logging tool for groundwater investigations.
    Walsh D; Turner P; Grunewald E; Zhang H; Butler JJ; Reboulet E; Knobbe S; Christy T; Lane JW; Johnson CD; Munday T; Fitzpatrick A
    Ground Water; 2013; 51(6):914-26. PubMed ID: 23425428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells: Effects of entrapped and residual LNAPL.
    Lenhard RJ; Rayner JL; Davis GB
    J Contam Hydrol; 2017 Oct; 205():1-11. PubMed ID: 28797669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance in environmental engineering: principles and applications.
    Lens PN; Hemminga MA
    Biodegradation; 1998; 9(6):393-409. PubMed ID: 10335581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphasic analysis of an Azoarcus-Leptothrix-dominated bacterial biofilm developed on stainless steel surface in a gasoline-contaminated hypoxic groundwater.
    Benedek T; Táncsics A; Szabó I; Farkas M; Szoboszlay S; Fábián K; Maróti G; Kriszt B
    Environ Sci Pollut Res Int; 2016 May; 23(9):9019-35. PubMed ID: 26825521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.
    Knight R; Walsh DO; Butler JJ; Grunewald E; Liu G; Parsekian AD; Reboulet EC; Knobbe S; Barrows M
    Ground Water; 2016 Jan; 54(1):104-14. PubMed ID: 25810149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of forming biofilms by Pseudomonas migulae AN-1 toward in situ bioremediation of aniline-contaminated aquifer by groundwater circulation wells.
    Zhao Y; Qu D; Zhou R; Yang S; Ren H
    Environ Sci Pollut Res Int; 2016 Jun; 23(12):11568-73. PubMed ID: 27115704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ aerobic cometabolism of chlorinated solvents: a review.
    Frascari D; Zanaroli G; Danko AS
    J Hazard Mater; 2015; 283():382-99. PubMed ID: 25306537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR investigation of water diffusion in different biofilm structures.
    Herrling MP; Weisbrodt J; Kirkland CM; Williamson NH; Lackner S; Codd SL; Seymour JD; Guthausen G; Horn H
    Biotechnol Bioeng; 2017 Dec; 114(12):2857-2867. PubMed ID: 28755486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.
    Warren E; Bekins BA
    J Contam Hydrol; 2015 Nov; 182():183-93. PubMed ID: 26409188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.