These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26308100)

  • 41. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes.
    Li X; Gu M; Hu S; Kennard R; Yan P; Chen X; Wang C; Sailor MJ; Zhang JG; Liu J
    Nat Commun; 2014 Jul; 5():4105. PubMed ID: 25001098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced Stability Lithium-Ion Battery Based on Optimized Graphene/Si Nanocomposites by Templated Assembly.
    Liu L; Li X; Zhang G; Zhang Z; Fang C; Ma H; Luo W; Liu Z
    ACS Omega; 2019 Nov; 4(19):18195-18202. PubMed ID: 31720520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vertical Graphene Growth on SiO Microparticles for Stable Lithium Ion Battery Anodes.
    Shi L; Pang C; Chen S; Wang M; Wang K; Tan Z; Gao P; Ren J; Huang Y; Peng H; Liu Z
    Nano Lett; 2017 Jun; 17(6):3681-3687. PubMed ID: 28471678
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interface chemistry engineering for stable cycling of reduced GO/SnO2 nanocomposites for lithium ion battery.
    Wang L; Wang D; Dong Z; Zhang F; Jin J
    Nano Lett; 2013 Apr; 13(4):1711-6. PubMed ID: 23477450
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A silicon nanowire-reduced graphene oxide composite as a high-performance lithium ion battery anode material.
    Ren JG; Wang C; Wu QH; Liu X; Yang Y; He L; Zhang W
    Nanoscale; 2014 Mar; 6(6):3353-60. PubMed ID: 24522297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tissue-like Silicon Nanowires-Based Three-Dimensional Anodes for High-Capacity Lithium Ion Batteries.
    Peled E; Patolsky F; Golodnitsky D; Freedman K; Davidi G; Schneier D
    Nano Lett; 2015 Jun; 15(6):3907-16. PubMed ID: 25970605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Zeolite-Templated Mesoporous Silicon Particles for Advanced Lithium-Ion Battery Anodes.
    Kim N; Park H; Yoon N; Lee JK
    ACS Nano; 2018 Apr; 12(4):3853-3864. PubMed ID: 29595959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density.
    Son IH; Hwan Park J; Kwon S; Park S; Rümmeli MH; Bachmatiuk A; Song HJ; Ku J; Choi JW; Choi JM; Doo SG; Chang H
    Nat Commun; 2015 Jun; 6():7393. PubMed ID: 26109057
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Scalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
    Wang J; Meng X; Fan X; Zhang W; Zhang H; Wang C
    ACS Nano; 2015 Jun; 9(6):6576-86. PubMed ID: 26014439
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A thick yet dense silicon anode with enhanced interface stability in lithium storage evidenced by in situ TEM observations.
    Han J; Tang DM; Kong D; Chen F; Xiao J; Zhao Z; Pan S; Wu S; Yang QH
    Sci Bull (Beijing); 2020 Sep; 65(18):1563-1569. PubMed ID: 36738074
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes.
    Ma J; Sung J; Hong J; Chae S; Kim N; Choi SH; Nam G; Son Y; Kim SY; Ko M; Cho J
    Nat Commun; 2019 Jan; 10(1):475. PubMed ID: 30696835
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Self-Rearrangement of Silicon Nanoparticles Embedded in Micro-Carbon Sphere Framework for High-Energy and Long-Life Lithium-Ion Batteries.
    Jeong MG; Du HL; Islam M; Lee JK; Sun YK; Jung HG
    Nano Lett; 2017 Sep; 17(9):5600-5606. PubMed ID: 28845992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual Cross-Linked Fluorinated Binder Network for High-Performance Silicon and Silicon Oxide Based Anodes in Lithium-Ion Batteries.
    Cai Y; Li Y; Jin B; Ali A; Ling M; Cheng D; Lu J; Hou Y; He Q; Zhan X; Chen F; Zhang Q
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46800-46807. PubMed ID: 31738044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes.
    Wang W; Ruiz I; Ahmed K; Bay HH; George AS; Wang J; Butler J; Ozkan M; Ozkan CS
    Small; 2014 Aug; 10(16):3389-96. PubMed ID: 24753292
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode.
    Lee SH; Park S; Kim M; Yoon D; Chanthad C; Cho M; Kim J; Park JH; Lee Y
    Sci Rep; 2016 Aug; 6():32011. PubMed ID: 27535108
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene networks anchored with sn@graphene as lithium ion battery anode.
    Qin J; He C; Zhao N; Wang Z; Shi C; Liu EZ; Li J
    ACS Nano; 2014 Feb; 8(2):1728-38. PubMed ID: 24400945
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
    Ji J; Liu J; Lai L; Zhao X; Zhen Y; Lin J; Zhu Y; Ji H; Zhang LL; Ruoff RS
    ACS Nano; 2015 Aug; 9(8):8609-16. PubMed ID: 26258909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrating Dually Encapsulated Si Architecture and Dense Structural Engineering for Ultrahigh Volumetric and Areal Capacity of Lithium Storage.
    Liu Z; Lu D; Wang W; Yue L; Zhu J; Zhao L; Zheng H; Wang J; Li Y
    ACS Nano; 2022 Mar; 16(3):4642-4653. PubMed ID: 35254052
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A multilayered silicon-reduced graphene oxide electrode for high performance lithium-ion batteries.
    Gao X; Li J; Xie Y; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7855-62. PubMed ID: 25826636
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lithium Batteries with Nearly Maximum Metal Storage.
    Raji AO; Villegas Salvatierra R; Kim ND; Fan X; Li Y; Silva GAL; Sha J; Tour JM
    ACS Nano; 2017 Jun; 11(6):6362-6369. PubMed ID: 28511004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.