These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26308207)

  • 1. Validation of a Mechanistic Model for Non-Invasive Study of Ecological Energetics in an Endangered Wading Bird with Counter-Current Heat Exchange in its Legs.
    Fitzpatrick MJ; Mathewson PD; Porter WP
    PLoS One; 2015; 10(8):e0136677. PubMed ID: 26308207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental DNA sampling reveals high occupancy rates of invasive Burmese pythons at wading bird breeding aggregations in the central Everglades.
    Orzechowski SCM; Frederick PC; Dorazio RM; Hunter ME
    PLoS One; 2019; 14(4):e0213943. PubMed ID: 30970028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of extreme climatic events on the energetics of long-lived vertebrates: the case of the greater flamingo facing cold spells in the Camargue.
    Deville AS; Labaude S; Robin JP; Béchet A; Gauthier-Clerc M; Porter W; Fitzpatrick M; Mathewson P; Grémillet D
    J Exp Biol; 2014 Oct; 217(Pt 20):3700-7. PubMed ID: 25320270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reintroduction medicine: whooping cranes in Wisconsin.
    Keller DL; Hartup BK
    Zoo Biol; 2013; 32(6):600-7. PubMed ID: 24027128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A laboratory exercise using a physical model for demonstrating countercurrent heat exchange.
    Loudon C; Davis-Berg EC; Botz JT
    Adv Physiol Educ; 2012 Mar; 36(1):58-62. PubMed ID: 22383414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coccidian Parasites and Conservation Implications for the Endangered Whooping Crane (Grus americana).
    Bertram MR; Hamer GL; Snowden KF; Hartup BK; Hamer SA
    PLoS One; 2015; 10(6):e0127679. PubMed ID: 26061631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy efficiency drives the global seasonal distribution of birds.
    Somveille M; Rodrigues ASL; Manica A
    Nat Ecol Evol; 2018 Jun; 2(6):962-969. PubMed ID: 29735990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ASAS centennial paper: net energy systems for beef cattle--concepts, application, and future models.
    Ferrell CL; Oltjen JW
    J Anim Sci; 2008 Oct; 86(10):2779-94. PubMed ID: 18820167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting and mapping potential Whooping Crane stopover habitat to guide site selection for wind energy projects.
    Belaire JA; Kreakie BJ; Keitt T; Minor E
    Conserv Biol; 2014 Apr; 28(2):541-50. PubMed ID: 24372936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms promoting higher growth rate in arctic than in temperate shorebirds.
    Schekkerman H; Tulp I; Piersma T; Visser GH
    Oecologia; 2003 Feb; 134(3):332-42. PubMed ID: 12647140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological Responses to Extreme Flooding Events: A Case Study with a Reintroduced Bird.
    Soriano-Redondo A; Bearhop S; Cleasby IR; Lock L; Votier SC; Hilton GM
    Sci Rep; 2016 Jun; 6():28595. PubMed ID: 27345214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The use of data loggers to determine the energetics and physiology of aquatic birds and mammals.
    Butler PJ; Bevan RM; Woakes AJ; Croxall JP; Boyd IL
    Braz J Med Biol Res; 1995; 28(11-12):1307-17. PubMed ID: 8728860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms.
    Speakman JR; Król E
    J Anim Ecol; 2010 Jul; 79(4):726-46. PubMed ID: 20443992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory heat and water exchange in penguins.
    Murrish DE
    Respir Physiol; 1973 Dec; 19(3):262-70. PubMed ID: 4781818
    [No Abstract]   [Full Text] [Related]  

  • 15. Counter-current heat exchange in the respiratory passages: effect on water and heat balance.
    Schmidt-Nielsen K; Hainsworth FR; Murrish DE
    Respir Physiol; 1970 May; 9(2):263-76. PubMed ID: 5445187
    [No Abstract]   [Full Text] [Related]  

  • 16. Associations between Resting, Activity, and Daily Metabolic Rate in Free-Living Endotherms: No Universal Rule in Birds and Mammals.
    Portugal SJ; Green JA; Halsey LG; Arnold W; Careau V; Dann P; Frappell PB; Grémillet D; Handrich Y; Martin GR; Ruf T; Guillemette MM; Butler PJ
    Physiol Biochem Zool; 2016; 89(3):251-61. PubMed ID: 27153134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiant heat affects thermoregulation and energy expenditure during rewarming from torpor.
    Geiser F; Drury RL
    J Comp Physiol B; 2003 Feb; 173(1):55-60. PubMed ID: 12592443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why do flamingos stand on one leg?
    Anderson MJ; Williams SA
    Zoo Biol; 2010; 29(3):365-74. PubMed ID: 19637281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermoregulation in endotherms: physiological principles and ecological consequences.
    Rezende EL; Bacigalupe LD
    J Comp Physiol B; 2015 Oct; 185(7):709-27. PubMed ID: 26025431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics meets the ecological niche: the importance of temporal data resolution.
    Kearney MR; Matzelle A; Helmuth B
    J Exp Biol; 2012 Mar; 215(Pt 6):922-33. PubMed ID: 22357586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.