BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 26308470)

  • 1. Formation of long single quantum dots in high quality InSb nanowires grown by molecular beam epitaxy.
    Fan D; Li S; Kang N; Caroff P; Wang LB; Huang YQ; Deng MT; Yu CL; Xu HQ
    Nanoscale; 2015 Sep; 7(36):14822-8. PubMed ID: 26308470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of anisotropic g-factors for electrons in InSb nanowire quantum dots.
    Mu J; Huang S; Wang JY; Huang GY; Wang X; Xu HQ
    Nanotechnology; 2021 Jan; 32(2):020002. PubMed ID: 32987368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions.
    Li S; Kang N; Fan DX; Wang LB; Huang YQ; Caroff P; Xu HQ
    Sci Rep; 2016 Apr; 6():24822. PubMed ID: 27102689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant, level-dependent g factors in InSb nanowire quantum dots.
    Nilsson HA; Caroff P; Thelander C; Larsson M; Wagner JB; Wernersson LE; Samuelson L; Xu HQ
    Nano Lett; 2009 Sep; 9(9):3151-6. PubMed ID: 19736971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Quantum Transport in Free-Standing InSb Nanosheets.
    Kang N; Fan D; Zhi J; Pan D; Li S; Wang C; Guo J; Zhao J; Xu H
    Nano Lett; 2019 Jan; 19(1):561-569. PubMed ID: 30561213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foreign-catalyst-free growth of InAs/InSb axial heterostructure nanowires on Si (111) by molecular-beam epitaxy.
    So H; Pan D; Li L; Zhao J
    Nanotechnology; 2017 Mar; 28(13):135704. PubMed ID: 28256450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Catalyzed InSb/InAs Quantum Dot Nanowires.
    Arif O; Zannier V; Rossi F; Ercolani D; Beltram F; Sorba L
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33450840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic Structure and Epitaxy of CdTe Shells on InSb Nanowires.
    Badawy G; Zhang B; Rauch T; Momand J; Koelling S; Jung J; Gazibegovic S; Moutanabbir O; Kooi BJ; Botti S; Verheijen MA; Frolov SM; Bakkers EPAM
    Adv Sci (Weinh); 2022 Apr; 9(12):e2105722. PubMed ID: 35182039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device.
    Deng MT; Yu CL; Huang GY; Larsson M; Caroff P; Xu HQ
    Nano Lett; 2012 Dec; 12(12):6414-9. PubMed ID: 23181691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires.
    Nadj-Perge S; Pribiag VS; van den Berg JW; Zuo K; Plissard SR; Bakkers EP; Frolov SM; Kouwenhoven LP
    Phys Rev Lett; 2012 Apr; 108(16):166801. PubMed ID: 22680747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MBE-grown Si and Si(1-x)Ge(x) quantum dots embedded within epitaxial Gd2O3 on Si(111) substrate for floating gate memory device.
    Manna S; Aluguri R; Katiyar A; Das S; Laha A; Osten HJ; Ray SK
    Nanotechnology; 2013 Dec; 24(50):505709. PubMed ID: 24284782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambipolar transport in narrow bandgap semiconductor InSb nanowires.
    Dalelkhan B; Göransson DJO; Thelander C; Li K; Xing YJ; Maisi VF; Xu HQ
    Nanoscale; 2020 Apr; 12(15):8159-8165. PubMed ID: 32239037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoluminescence and photocurrent from InP nanowires with InAsP quantum dots grown on Si by molecular beam epitaxy.
    Kuyanov P; LaPierre RR
    Nanotechnology; 2015 Aug; 26(31):315202. PubMed ID: 26177614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot.
    Fasth C; Fuhrer A; Samuelson L; Golovach VN; Loss D
    Phys Rev Lett; 2007 Jun; 98(26):266801. PubMed ID: 17678116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crossover from Coulomb blockade to ballistic transport in InAs nanowire devices.
    Wang LB; Pan D; Huang GY; Zhao J; Kang N; Xu HQ
    Nanotechnology; 2019 Mar; 30(12):124001. PubMed ID: 30566928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A highly tunable quadruple quantum dot in a narrow bandgap semiconductor InAs nanowire.
    Mu J; Huang S; Liu ZH; Li W; Wang JY; Pan D; Huang GY; Chen Y; Zhao J; Xu HQ
    Nanoscale; 2021 Feb; 13(7):3983-3990. PubMed ID: 33595588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free-Standing Two-Dimensional Single-Crystalline InSb Nanosheets.
    Pan D; Fan DX; Kang N; Zhi JH; Yu XZ; Xu HQ; Zhao JH
    Nano Lett; 2016 Feb; 16(2):834-41. PubMed ID: 26788662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective-Area Superconductor Epitaxy to Ballistic Semiconductor Nanowires.
    Gill ST; Damasco J; Janicek BE; Durkin MS; Humbert V; Gazibegovic S; Car D; Bakkers EPAM; Huang PY; Mason N
    Nano Lett; 2018 Oct; 18(10):6121-6128. PubMed ID: 30200769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical control of single hole spins in nanowire quantum dots.
    Pribiag VS; Nadj-Perge S; Frolov SM; van den Berg JW; van Weperen I; Plissard SR; Bakkers EP; Kouwenhoven LP
    Nat Nanotechnol; 2013 Mar; 8(3):170-4. PubMed ID: 23416794
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.