These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

397 related articles for article (PubMed ID: 26308593)

  • 1. Catalyst-Free, Selective Growth of ZnO Nanowires on SiO2 by Chemical Vapor Deposition for Transfer-Free Fabrication of UV Photodetectors.
    Xu L; Li X; Zhan Z; Wang L; Feng S; Chai X; Lu W; Shen J; Weng Z; Sun J
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20264-71. PubMed ID: 26308593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled growth of vertically aligned ZnO nanowires with different crystal orientation of the ZnO seed layer.
    Cha SN; Song BG; Jang JE; Jung JE; Han IT; Ha JH; Hong JP; Kang DJ; Kim JM
    Nanotechnology; 2008 Jun; 19(23):235601. PubMed ID: 21825796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective area growth of well-ordered ZnO nanowire arrays with controllable polarity.
    Consonni V; Sarigiannidou E; Appert E; Bocheux A; Guillemin S; Donatini F; Robin IC; Kioseoglou J; Robaut F
    ACS Nano; 2014 May; 8(5):4761-70. PubMed ID: 24720628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A metal-semiconductor-metal detector based on ZnO nanowires grown on a graphene layer.
    Xu Q; Cheng Q; Zhong J; Cai W; Zhang Z; Wu Z; Zhang F
    Nanotechnology; 2014 Feb; 25(5):055501. PubMed ID: 24407201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Edge-Epitaxial Growth of InSe Nanowires toward High-Performance Photodetectors.
    Hao S; Yan S; Wang Y; Xu T; Zhang H; Cong X; Li L; Liu X; Cao T; Gao A; Zhang L; Jia L; Long M; Hu W; Wang X; Tan P; Sun L; Cui X; Liang SJ; Miao F
    Small; 2020 Jan; 16(4):e1905902. PubMed ID: 31867892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled synthesis of ultrathin ZnO nanowires using micellar gold nanoparticles as catalyst templates.
    Yin H; Wang Q; Geburt S; Milz S; Ruttens B; Degutis G; D'Haen J; Shan L; Punniyakoti S; D'Olieslaeger M; Wagner P; Ronning C; Boyen HG
    Nanoscale; 2013 Aug; 5(15):7046-53. PubMed ID: 23807664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalyst free growth of ZnO nanowires on graphene and graphene oxide and its enhanced photoluminescence and photoresponse.
    Biroju RK; Tilak N; Rajender G; Dhara S; Giri PK
    Nanotechnology; 2015 Apr; 26(14):145601. PubMed ID: 25772263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale opening fabrication on Si (111) surface from SiO2 barrier for vertical growth of III-V nanowire arrays.
    Shi T; Wang X; Wang B; Wang W; Yang X; Yang W; Chen Q; Xu H; Xu S; Yang T
    Nanotechnology; 2015 Jul; 26(26):265302. PubMed ID: 26062784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of ZnO nanowires and their applications as an ultraviolet photodetector.
    Lin CC; Lin WH; Li YY
    J Nanosci Nanotechnol; 2009 May; 9(5):2813-9. PubMed ID: 19452935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor.
    Suehiro J; Nakagawa N; Hidaka S; Ueda M; Imasaka K; Higashihata M; Okada T; Hara M
    Nanotechnology; 2006 May; 17(10):2567-73. PubMed ID: 21727506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: growth mechanism and photoluminescence properties.
    Biroju RK; Giri PK; Dhara S; Imakita K; Fujii M
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):377-87. PubMed ID: 24367888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital selective growth of a ZnO nanowire array by large scale laser decomposition of zinc acetate.
    Hong S; Yeo J; Manorotkul W; Kang HW; Lee J; Han S; Rho Y; Suh YD; Sung HJ; Ko SH
    Nanoscale; 2013 May; 5(9):3698-703. PubMed ID: 23494004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dramatically enhanced ultraviolet photosensing mechanism in a n-ZnO nanowires/i-MgO/n-Si structure with highly dense nanowires and ultrathin MgO layers.
    Kim DC; Jung BO; Lee JH; Cho HK; Lee JY; Lee JH
    Nanotechnology; 2011 Jul; 22(26):265506. PubMed ID: 21586813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-5 nm nanostructures fabricated by atomic layer deposition using a carbon nanotube template.
    Woo JY; Han H; Kim JW; Lee SM; Ha JS; Shim JH; Han CS
    Nanotechnology; 2016 Jul; 27(26):265301. PubMed ID: 27188268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism and diameter control of well-aligned small-diameter ZnO nanowire arrays synthesized by a catalyst-free thermal evaporation method.
    Li S; Zhang X; Yan B; Yu T
    Nanotechnology; 2009 Dec; 20(49):495604. PubMed ID: 19893154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexographic printing-assisted fabrication of ZnO nanowire devices.
    Lloyd JS; Fung CM; Deganello D; Wang RJ; Maffeis TG; Lau SP; Teng KS
    Nanotechnology; 2013 May; 24(19):195602. PubMed ID: 23579099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable growth of laterally aligned zinc oxide nanorod arrays on a selected surface of the silicon substrate by a catalyst-free vapor solid process--a technique for growing nanocircuits.
    Lu W; Jiang C; Caudle D; Tang C; Sun Q; Xu J; Song J
    Phys Chem Chem Phys; 2013 Aug; 15(32):13532-7. PubMed ID: 23824182
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of initial growth of ZnO nanowires and their growth mechanism.
    Jeong JS; Lee JY
    Nanotechnology; 2010 Nov; 21(47):475603. PubMed ID: 21030769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of catalyst-free high-quality ZnO nanowires by thermal evaporation under air ambient.
    Liu P; Li Y; Guo Y; Zhang Z
    Nanoscale Res Lett; 2012 Apr; 7(1):220. PubMed ID: 22502639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.