These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 26308981)

  • 1. Optogenetics: 10 years after ChR2 in neurons--views from the community.
    Adamantidis A; Arber S; Bains JS; Bamberg E; Bonci A; Buzsáki G; Cardin JA; Costa RM; Dan Y; Goda Y; Graybiel AM; Häusser M; Hegemann P; Huguenard JR; Insel TR; Janak PH; Johnston D; Josselyn SA; Koch C; Kreitzer AC; Lüscher C; Malenka RC; Miesenböck G; Nagel G; Roska B; Schnitzer MJ; Shenoy KV; Soltesz I; Sternson SM; Tsien RW; Tsien RY; Turrigiano GG; Tye KM; Wilson RI
    Nat Neurosci; 2015 Sep; 18(9):1202-12. PubMed ID: 26308981
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of transgenic animals in optogenetics].
    Tanaka K
    Nihon Yakurigaku Zasshi; 2014 Apr; 143(4):193-7. PubMed ID: 24717608
    [No Abstract]   [Full Text] [Related]  

  • 4. The Expanding Family of Natural Anion Channelrhodopsins Reveals Large Variations in Kinetics, Conductance, and Spectral Sensitivity.
    Govorunova EG; Sineshchekov OA; Rodarte EM; Janz R; Morelle O; Melkonian M; Wong GK; Spudich JL
    Sci Rep; 2017 Mar; 7():43358. PubMed ID: 28256618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of continuously-varying stimuli using channelrhodopsin-2.
    Tchumatchenko T; Newman JP; Fong MF; Potter SM
    Front Neural Circuits; 2013; 7():184. PubMed ID: 24367294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal time spiking in various ChR2-controlled neuron models.
    Renault V; Thieullen M; Trélat E
    J Math Biol; 2018 Feb; 76(3):567-608. PubMed ID: 28664220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic approach to express the channelrhodopsin 2 gene in arginine vasopressin neurons of rats.
    Ishii M; Hashimoto H; Ohkubo JI; Ohbuchi T; Saito T; Maruyama T; Yoshimura M; Yamamoto Y; Kusuhara K; Ueta Y
    Neurosci Lett; 2016 Sep; 630():194-198. PubMed ID: 27493075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channelrhodopsin-2-expressed dorsal root ganglion neurons activates calcium channel currents and increases action potential in spinal cord.
    Zhang Y; Yue J; Ai M; Ji Z; Liu Z; Cao X; Li L
    Spine (Phila Pa 1976); 2014 Jul; 39(15):E865-9. PubMed ID: 25171072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation of medial amygdala GABA neurons with kinetically different channelrhodopsins yields opposite behavioral outcomes.
    Baleisyte A; Schneggenburger R; Kochubey O
    Cell Rep; 2022 May; 39(8):110850. PubMed ID: 35613578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic inhibition of behavior with anion channelrhodopsins.
    Mohammad F; Stewart JC; Ott S; Chlebikova K; Chua JY; Koh TW; Ho J; Claridge-Chang A
    Nat Methods; 2017 Mar; 14(3):271-274. PubMed ID: 28114289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ChR2 coming of age.
    Nat Neurosci; 2015 Sep; 18(9):1191. PubMed ID: 26308975
    [No Abstract]   [Full Text] [Related]  

  • 12. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.
    Renault R; Sukenik N; Descroix S; Malaquin L; Viovy JL; Peyrin JM; Bottani S; Monceau P; Moses E; Vignes M
    PLoS One; 2015; 10(4):e0120680. PubMed ID: 25901914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bright future? Optogenetics in the periphery for pain research and therapy.
    Mickle AD; Gereau RW
    Pain; 2018 Sep; 159 Suppl 1(Suppl 1):S65-S73. PubMed ID: 30113949
    [No Abstract]   [Full Text] [Related]  

  • 14. Application of Optogenetics in Gene Therapy.
    Kushibiki T; Ishihara M
    Curr Gene Ther; 2018; 18(1):40-44. PubMed ID: 29512463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The past, present and future of light-gated ion channels and optogenetics.
    Josselyn SA
    Elife; 2018 Oct; 7():. PubMed ID: 30343681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The power of optogenetics : Potential in cardiac experimental and clinical electrophysiology.
    Schneider-Warme F
    Herzschrittmacherther Elektrophysiol; 2018 Mar; 29(1):24-29. PubMed ID: 29305704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic Stimulation of Arcuate Nucleus Kiss1 Neurons Reveals a Steroid-Dependent Glutamatergic Input to POMC and AgRP Neurons in Male Mice.
    Nestor CC; Qiu J; Padilla SL; Zhang C; Bosch MA; Fan W; Aicher SA; Palmiter RD; Rønnekleiv OK; Kelly MJ
    Mol Endocrinol; 2016 Jun; 30(6):630-44. PubMed ID: 27093227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Color Neural Activation and Behavior Control with Chrimson and CoChR in Caenorhabditis elegans.
    Schild LC; Glauser DA
    Genetics; 2015 Aug; 200(4):1029-34. PubMed ID: 26022242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of an optogenetic model for olfactory stimulation.
    Genovese F; Thews M; Möhrlen F; Frings S
    J Physiol; 2016 Jul; 594(13):3501-16. PubMed ID: 26857095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.
    Karathanos TV; Bayer JD; Wang D; Boyle PM; Trayanova NA
    J Physiol; 2016 Dec; 594(23):6879-6891. PubMed ID: 26941055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.