BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 26309066)

  • 1. Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells.
    Antfolk M; Magnusson C; Augustsson P; Lilja H; Laurell T
    Anal Chem; 2015 Sep; 87(18):9322-8. PubMed ID: 26309066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single inlet two-stage acoustophoresis chip enabling tumor cell enrichment from white blood cells.
    Antfolk M; Antfolk C; Lilja H; Laurell T; Augustsson P
    Lab Chip; 2015 May; 15(9):2102-9. PubMed ID: 25824937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thousand-fold volumetric concentration of live cells with a recirculating acoustofluidic device.
    Jakobsson O; Oh SS; Antfolk M; Eisenstein M; Laurell T; Soh HT
    Anal Chem; 2015 Aug; 87(16):8497-502. PubMed ID: 26226316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system.
    Antfolk M; Kim SH; Koizumi S; Fujii T; Laurell T
    Sci Rep; 2017 Apr; 7():46507. PubMed ID: 28425472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic, label-free enrichment of prostate cancer cells in blood based on acoustophoresis.
    Augustsson P; Magnusson C; Nordin M; Lilja H; Laurell T
    Anal Chem; 2012 Sep; 84(18):7954-62. PubMed ID: 22897670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free ferrohydrodynamic cell separation of circulating tumor cells.
    Zhao W; Cheng R; Jenkins BD; Zhu T; Okonkwo NE; Jones CE; Davis MB; Kavuri SK; Hao Z; Schroeder C; Mao L
    Lab Chip; 2017 Sep; 17(18):3097-3111. PubMed ID: 28809987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic inertia enhanced phase partitioning for enriching nucleated cell populations in blood.
    Parichehreh V; Medepallai K; Babbarwal K; Sethu P
    Lab Chip; 2013 Mar; 13(5):892-900. PubMed ID: 23307172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FAST: Size-Selective, Clog-Free Isolation of Rare Cancer Cells from Whole Blood at a Liquid-Liquid Interface.
    Kim TH; Lim M; Park J; Oh JM; Kim H; Jeong H; Lee SJ; Park HC; Jung S; Kim BC; Lee K; Kim MH; Park DY; Kim GH; Cho YK
    Anal Chem; 2017 Jan; 89(2):1155-1162. PubMed ID: 27958721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microsieve lab-chip device for rapid enumeration and fluorescence in situ hybridization of circulating tumor cells.
    Lim LS; Hu M; Huang MC; Cheong WC; Gan AT; Looi XL; Leong SM; Koay ES; Li MH
    Lab Chip; 2012 Nov; 12(21):4388-96. PubMed ID: 22930096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation.
    Petersson F; Aberg L; Swärd-Nilsson AM; Laurell T
    Anal Chem; 2007 Jul; 79(14):5117-23. PubMed ID: 17569501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis.
    Urbansky A; Ohlsson P; Lenshof A; Garofalo F; Scheding S; Laurell T
    Sci Rep; 2017 Dec; 7(1):17161. PubMed ID: 29215046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lectin-aided separation of circulating tumor cells and assay of their response to an anticancer drug in an integrated microfluidic device.
    Li L; Liu W; Wang J; Tu Q; Liu R; Wang J
    Electrophoresis; 2010 Sep; 31(18):3159-66. PubMed ID: 20872615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic platform for negative enrichment of circulating tumor cells.
    Sajay BN; Chang CP; Ahmad H; Khuntontong P; Wong CC; Wang Z; Puiu PD; Soo R; Rahman AR
    Biomed Microdevices; 2014 Aug; 16(4):537-48. PubMed ID: 24668439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Cell Isolation of Circulating Tumor Cells from Whole Blood by Lateral Magnetophoretic Microseparation and Microfluidic Dispensing.
    Kim J; Cho H; Han SI; Han KH
    Anal Chem; 2016 May; 88(9):4857-63. PubMed ID: 27093098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label-free enumeration of colorectal cancer cells from lymphocytes performed at a high cell-loading density by using interdigitated ring-array microelectrodes.
    Xing X; Poon RY; Wong CS; Yobas L
    Biosens Bioelectron; 2014 Nov; 61():434-42. PubMed ID: 24934744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of cancer cells from white blood cells by pinched flow fractionation.
    Pødenphant M; Ashley N; Koprowska K; Mir KU; Zalkovskij M; Bilenberg B; Bodmer W; Kristensen A; Marie R
    Lab Chip; 2015 Dec; 15(24):4598-606. PubMed ID: 26510401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic flow fractionation device for label-free isolation of circulating tumor cells (CTCs) from breast cancer patients.
    Hyun KA; Kwon K; Han H; Kim SI; Jung HI
    Biosens Bioelectron; 2013 Feb; 40(1):206-12. PubMed ID: 22857995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.