These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 26309151)

  • 1. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy.
    Bugge K; Steinocher H; Brooks AJ; Lindorff-Larsen K; Kragelund BB
    Anal Chem; 2015 Sep; 87(18):9126-31. PubMed ID: 26309151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.
    Biverståhl H; Andersson A; Gräslund A; Mäler L
    Biochemistry; 2004 Nov; 43(47):14940-7. PubMed ID: 15554701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence context and modified hydrophobic moment plots help identify 'horizontal' surface helices in transmembrane protein structure prediction.
    Orgel JP
    J Struct Biol; 2004 Oct; 148(1):51-65. PubMed ID: 15363787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding.
    De Marothy MT; Elofsson A
    Protein Sci; 2015 Jul; 24(7):1057-74. PubMed ID: 25970811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic mismatch of mobile transmembrane helices: Merging theory and experiments.
    Strandberg E; Esteban-Martín S; Ulrich AS; Salgado J
    Biochim Biophys Acta; 2012 May; 1818(5):1242-9. PubMed ID: 22326890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prediction of hydrophobicity gradients within membrane interactive protein alpha-helices using a novel graphical technique.
    Harris F; Dennison S; Phoenix DA
    Protein Pept Lett; 2006; 13(6):595-600. PubMed ID: 16842115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding single-pass transmembrane receptor signaling from a structural viewpoint-what are we missing?
    Bugge K; Lindorff-Larsen K; Kragelund BB
    FEBS J; 2016 Dec; 283(24):4424-4451. PubMed ID: 27350538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Why is the biological hydrophobicity scale more accurate than earlier experimental hydrophobicity scales?
    Peters C; Elofsson A
    Proteins; 2014 Sep; 82(9):2190-8. PubMed ID: 24753217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NMR solution structure of the peptide fragment 1-30, derived from unprocessed mouse Doppel protein, in DHPC micelles.
    Papadopoulos E; Oglecka K; Mäler L; Jarvet J; Wright PE; Dyson HJ; Gräslund A
    Biochemistry; 2006 Jan; 45(1):159-66. PubMed ID: 16388591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between mastoparan B and the membrane studied by 1H NMR spectroscopy.
    Yu K; Kang S; Kim SD; Ryu PD; Kim Y
    J Biomol Struct Dyn; 2001 Feb; 18(4):595-606. PubMed ID: 11245254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systematic search method for the identification of tightly packed transmembrane parallel alpha-helices.
    Akula N; Pattabiraman N
    J Biomol Struct Dyn; 2005 Jun; 22(6):625-34. PubMed ID: 15842168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repositioning of transmembrane alpha-helices during membrane protein folding.
    Kauko A; Hedin LE; Thebaud E; Cristobal S; Elofsson A; von Heijne G
    J Mol Biol; 2010 Mar; 397(1):190-201. PubMed ID: 20109468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards membrane protein design: pH-sensitive topology of histidine-containing polypeptides.
    Bechinger B
    J Mol Biol; 1996 Nov; 263(5):768-75. PubMed ID: 8947574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transmembrane helices of the L, M, and N subunits of Complex I from E. coli can be assigned on the basis of conservation and hydrophobic moment analysis.
    Vik SB
    FEBS Lett; 2011 Apr; 585(8):1180-4. PubMed ID: 21420404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.
    Hilty C; Wider G; Fernández C; Wüthrich K
    Chembiochem; 2004 Apr; 5(4):467-73. PubMed ID: 15185370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane proteins: from bench to bits.
    von Heijne G
    Biochem Soc Trans; 2011 Jun; 39(3):747-50. PubMed ID: 21599644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units.
    Paulet D; Claustres M; Béroud C
    BMC Bioinformatics; 2011 May; 12():135. PubMed ID: 21545751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insight into the transmembrane domain and the juxtamembrane region of the erythropoietin receptor in micelles.
    Li Q; Wong YL; Huang Q; Kang C
    Biophys J; 2014 Nov; 107(10):2325-36. PubMed ID: 25418301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.