These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26309752)

  • 1. Experimental system for measuring the full scattering profile of circular phantoms.
    Feder I; Duadi H; Fixler D
    Biomed Opt Express; 2015 Aug; 6(8):2877-86. PubMed ID: 26309752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect.
    Feder I; Duadi H; Dreifuss T; Fixler D
    J Biophotonics; 2016 Oct; 9(10):1001-1008. PubMed ID: 26663658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue.
    Duadi H; Fixler D
    J Biomed Opt; 2015 May; 20(5):56010. PubMed ID: 26016448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental results of full scattering profile from finger tissue-like phantom.
    Feder I; Wróbel M; Duadi H; Jędrzejewska-Szczerska M; Fixler D
    Biomed Opt Express; 2016 Nov; 7(11):4695-4701. PubMed ID: 27896008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear dependency of full scattering profile isobaric point on tissue diameter.
    Duadi H; Feder I; Fixler D
    J Biomed Opt; 2014 Feb; 19(2):026007. PubMed ID: 24522807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflected light intensity profile of two-layer tissues: phantom experiments.
    Ankri R; Taitelbaum H; Fixler D
    J Biomed Opt; 2011 Aug; 16(8):085001. PubMed ID: 21895309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared human finger measurements based on self-calibration point: Simulation and in vivo experiments.
    Duadi H; Feder I; Fixler D
    J Biophotonics; 2018 Apr; 11(4):e201700208. PubMed ID: 29131520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission and fluorescence angular domain optical projection tomography of turbid media.
    Vasefi F; Ng E; Kaminska B; Chapman GH; Jordan K; Carson JJ
    Appl Opt; 2009 Nov; 48(33):6448-57. PubMed ID: 19935964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of isotropic light dosimetry probes based on scattering bulbs in turbid media.
    Marijnissen JP; Star WM
    Phys Med Biol; 2002 Jun; 47(12):2049-58. PubMed ID: 12118600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of light scattering profile in tissue on blood vessel diameter and distribution: a computer simulation study.
    Duadi H; Fixler D; Popovtzer R
    J Biomed Opt; 2013 Nov; 18(11):111408. PubMed ID: 23887384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering.
    Wróbel MS; Popov AP; Bykov AV; Tuchin VV; Jędrzejewska-Szczerska M
    Biomed Opt Express; 2016 Jun; 7(6):2088-94. PubMed ID: 27375928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom layer absorption coefficients extraction from two-layer phantoms based on crossover point in diffuse reflectance.
    Rudraiah PS; Duadi H; Fixler D
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34850612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2007 Aug; 15(17):10649-65. PubMed ID: 19547419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental tests of a simple diffusion model for the estimation of scattering and absorption coefficients of turbid media from time-resolved diffuse reflectance measurements.
    Madsen SJ; Wilson BC; Patterson MS; Park YD; Jacques SL; Hefetz Y
    Appl Opt; 1992 Jun; 31(18):3509-17. PubMed ID: 20725319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting Contaminants in Water Based on Full Scattering Profiles within the Single Scattering Regime.
    Tzroya A; Erblich S; Duadi H; Fixler D
    ACS Omega; 2023 Jul; 8(26):23733-23738. PubMed ID: 37426274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light.
    Fukutomi D; Ishii K; Awazu K
    Lasers Med Sci; 2015 May; 30(4):1335-40. PubMed ID: 25772249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-scattering software part II: experimental validation for the light intensity distribution.
    Frantz D; Jönsson J; Berrocal E
    Opt Express; 2022 Jan; 30(2):1261-1279. PubMed ID: 35209290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-modulated light scattering interferometry employed for optical properties and dynamics studies of turbid media.
    Mei L; Somesfalean G; Svanberg S
    Biomed Opt Express; 2014 Aug; 5(8):2810-22. PubMed ID: 25136504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do different turbid media with matched bulk optical properties also exhibit similar polarization properties?
    Ahmad M; Alali S; Kim A; Wood MF; Ikram M; Vitkin IA
    Biomed Opt Express; 2011 Dec; 2(12):3248-58. PubMed ID: 22162815
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.