BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 26309763)

  • 1. Simple wavefront correction framework for two-photon microscopy of in-vivo brain.
    Galwaduge PT; Kim SH; Grosberg LE; Hillman EM
    Biomed Opt Express; 2015 Aug; 6(8):2997-3013. PubMed ID: 26309763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm.
    Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J
    Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-Photon Adaptive Optics for Mouse Brain Imaging.
    Sinefeld D; Xia F; Wang M; Wang T; Wu C; Yang X; Paudel HP; Ouzounov DG; Bifano TG; Xu C
    Front Neurosci; 2022; 16():880859. PubMed ID: 35692424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid crystal wavefront correction based on improved machine learning for free-space optical communication.
    Guo H; Tang W; Wang Z; Yuan L; Li Y; He D; Wang Q; Huang Y
    Appl Opt; 2023 Dec; 62(36):9470-9475. PubMed ID: 38108771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast wavefront shaping for two-photon brain imaging with multipatch correction.
    Blochet B; Akemann W; Gigan S; Bourdieu L
    Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2305593120. PubMed ID: 38100413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavefront correction for adaptive optics with reflected light and deep neural networks.
    Vishniakou I; Seelig JD
    Opt Express; 2020 May; 28(10):15459-15471. PubMed ID: 32403573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced neuroimaging with a calcium sensor in
    Hubert A; Farkouh G; Harms F; Veilly C; Imperato S; Mercier M; Loriette V; Rouyer F; Fragola A
    J Biomed Opt; 2023 Jun; 28(6):066501. PubMed ID: 37334209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy.
    Yang Y; Chen W; Fan JL; Ji N
    Biomed Opt Express; 2021 Jan; 12(1):354-366. PubMed ID: 33520387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of shift-less aberration bases for sensorless adaptive optics in nonlinear microscopy.
    Talone B; Pozzi P; Cavagnini M; Polli D; Pozzi G; Mapelli J
    Opt Express; 2021 Nov; 29(23):37617-37627. PubMed ID: 34808830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully refractive adaptive optics fluorescence microscope using an optofluidic wavefront modulator.
    Rajaeipour P; Dorn A; Banerjee K; Zappe H; Ataman Ç
    Opt Express; 2020 Mar; 28(7):9944-9956. PubMed ID: 32225593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous scattering compensation at multiple points in multi-photon microscopy.
    May MA; Kummer KK; Edenhofer ML; Choconta JL; Kress M; Ritsch-Marte M; Jesacher A
    Biomed Opt Express; 2021 Dec; 12(12):7377-7387. PubMed ID: 35003840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive optics full-field optical coherence tomography.
    Xiao P; Fink M; Boccara AC
    J Biomed Opt; 2016 Dec; 21(12):121505. PubMed ID: 27653794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope.
    Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y
    J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics.
    Ren M; Chen J; Chen D; Chen SC
    Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optofluidic adaptive optics in multi-photon microscopy.
    Sohmen M; Muñoz-Bolaños JD; Rajaeipour P; Ritsch-Marte M; Ataman Ç; Jesacher A
    Biomed Opt Express; 2023 Apr; 14(4):1562-1578. PubMed ID: 37078059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient wavefront sensorless adaptive optics based on large dynamic crosstalk-free holographic modal wavefront sensing.
    Liu M; Dong B
    Opt Express; 2022 Mar; 30(6):9088-9102. PubMed ID: 35299345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive optical two-photon microscopy using autofluorescent guide stars.
    Tao X; Norton A; Kissel M; Azucena O; Kubby J
    Opt Lett; 2013 Dec; 38(23):5075-8. PubMed ID: 24281513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of a sensorless adaptive optics multiphoton microscope.
    Skorsetz M; Artal P; Bueno JM
    J Microsc; 2016 Mar; 261(3):249-58. PubMed ID: 26469361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive optical versus spherical aberration corrections for
    Turcotte R; Liang Y; Ji N
    Biomed Opt Express; 2017 Aug; 8(8):3891-3902. PubMed ID: 28856058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.