These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 26309763)
1. Simple wavefront correction framework for two-photon microscopy of in-vivo brain. Galwaduge PT; Kim SH; Grosberg LE; Hillman EM Biomed Opt Express; 2015 Aug; 6(8):2997-3013. PubMed ID: 26309763 [TBL] [Abstract][Full Text] [Related]
2. Aberration Correction to Optimize the Performance of Two-Photon Fluorescence Microscopy Using the Genetic Algorithm. Yan W; Huang Y; Wang L; Guo Y; Li J; Zhu Y; Yang Z; Qu J Microsc Microanal; 2022 Jan; ():1-7. PubMed ID: 35074025 [TBL] [Abstract][Full Text] [Related]
3. Three-Photon Adaptive Optics for Mouse Brain Imaging. Sinefeld D; Xia F; Wang M; Wang T; Wu C; Yang X; Paudel HP; Ouzounov DG; Bifano TG; Xu C Front Neurosci; 2022; 16():880859. PubMed ID: 35692424 [TBL] [Abstract][Full Text] [Related]
4. Liquid crystal wavefront correction based on improved machine learning for free-space optical communication. Guo H; Tang W; Wang Z; Yuan L; Li Y; He D; Wang Q; Huang Y Appl Opt; 2023 Dec; 62(36):9470-9475. PubMed ID: 38108771 [TBL] [Abstract][Full Text] [Related]
5. Fast wavefront shaping for two-photon brain imaging with multipatch correction. Blochet B; Akemann W; Gigan S; Bourdieu L Proc Natl Acad Sci U S A; 2023 Dec; 120(51):e2305593120. PubMed ID: 38100413 [TBL] [Abstract][Full Text] [Related]
6. Wavefront correction for adaptive optics with reflected light and deep neural networks. Vishniakou I; Seelig JD Opt Express; 2020 May; 28(10):15459-15471. PubMed ID: 32403573 [TBL] [Abstract][Full Text] [Related]
7. Enhanced neuroimaging with a calcium sensor in Hubert A; Farkouh G; Harms F; Veilly C; Imperato S; Mercier M; Loriette V; Rouyer F; Fragola A J Biomed Opt; 2023 Jun; 28(6):066501. PubMed ID: 37334209 [TBL] [Abstract][Full Text] [Related]
8. Adaptive optics enables aberration-free single-objective remote focusing for two-photon fluorescence microscopy. Yang Y; Chen W; Fan JL; Ji N Biomed Opt Express; 2021 Jan; 12(1):354-366. PubMed ID: 33520387 [TBL] [Abstract][Full Text] [Related]
9. Experimental determination of shift-less aberration bases for sensorless adaptive optics in nonlinear microscopy. Talone B; Pozzi P; Cavagnini M; Polli D; Pozzi G; Mapelli J Opt Express; 2021 Nov; 29(23):37617-37627. PubMed ID: 34808830 [TBL] [Abstract][Full Text] [Related]
13. Aberration correction during real time in vivo imaging of bone marrow with sensorless adaptive optics confocal microscope. Wang Z; Wei D; Wei L; He Y; Shi G; Wei X; Zhang Y J Biomed Opt; 2014 Aug; 19(8):086009. PubMed ID: 25117079 [TBL] [Abstract][Full Text] [Related]
14. Aberration-free 3D imaging via DMD-based two-photon microscopy and sensorless adaptive optics. Ren M; Chen J; Chen D; Chen SC Opt Lett; 2020 May; 45(9):2656-2659. PubMed ID: 32356846 [TBL] [Abstract][Full Text] [Related]
15. Optofluidic adaptive optics in multi-photon microscopy. Sohmen M; Muñoz-Bolaños JD; Rajaeipour P; Ritsch-Marte M; Ataman Ç; Jesacher A Biomed Opt Express; 2023 Apr; 14(4):1562-1578. PubMed ID: 37078059 [TBL] [Abstract][Full Text] [Related]
16. Efficient wavefront sensorless adaptive optics based on large dynamic crosstalk-free holographic modal wavefront sensing. Liu M; Dong B Opt Express; 2022 Mar; 30(6):9088-9102. PubMed ID: 35299345 [TBL] [Abstract][Full Text] [Related]
17. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169 [TBL] [Abstract][Full Text] [Related]