These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2631008)

  • 1. Calculation of crystalline lens radii without resort to phakometry.
    Royston JM; Dunne MC; Barnes DA
    Ophthalmic Physiol Opt; 1989 Oct; 9(4):412-4. PubMed ID: 2631008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in ocular dimensions and refraction with accommodation.
    Garner LF; Yap MK
    Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scheme for the calculation of ocular components in a four-surfaced eye without need for measurement of the anterior crystalline lens surface Purkinje images.
    Dunne MC
    Ophthalmic Physiol Opt; 1992 Jul; 12(3):370-5. PubMed ID: 1454376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methods to estimate the size and shape of the unaccommodated crystalline lens in vivo.
    Rozema JJ; Atchison DA; Kasthurirangan S; Pope JM; Tassignon MJ
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):2533-40. PubMed ID: 22427565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central surface curvatures of postmortem- extracted intact human crystalline lenses: implications for understanding the mechanism of accommodation.
    Schachar RA
    Ophthalmology; 2004 Sep; 111(9):1699-704. PubMed ID: 15350325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of Bennett's method for determining the equivalent powers of the eye and its crystalline lens without resort to phakometry.
    Dunne MC; Barnes DA; Royston JM
    Ophthalmic Physiol Opt; 1989 Jan; 9(1):69-71. PubMed ID: 2594382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phakometric measurement of ocular surface radii of curvature, axial separations and alignment in relaxed and accommodated human eyes.
    Kirschkamp T; Dunne M; Barry JC
    Ophthalmic Physiol Opt; 2004 Mar; 24(2):65-73. PubMed ID: 15005670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystalline lens parameters in infancy.
    Wood IC; Mutti DO; Zadnik K
    Ophthalmic Physiol Opt; 1996 Jul; 16(4):310-7. PubMed ID: 8796200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys.
    Rosales P; Wendt M; Marcos S; Glasser A
    J Vis; 2008 Jan; 8(1):18.1-12. PubMed ID: 18318621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in lens dimensions and refractive index with age and accommodation.
    Jones CE; Atchison DA; Pope JM
    Optom Vis Sci; 2007 Oct; 84(10):990-5. PubMed ID: 18049365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnification and accommodation with phakic intraocular lenses.
    Langenbucher A; Szentmáry N; Seitz B
    Ophthalmic Physiol Opt; 2007 May; 27(3):295-302. PubMed ID: 17470243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change in shape of the aging human crystalline lens with accommodation.
    Dubbelman M; Van der Heijde GL; Weeber HA
    Vision Res; 2005 Jan; 45(1):117-32. PubMed ID: 15571742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of determining the equivalent powers of the eye and its crystalline lens without resort to phakometry.
    Bennett AG
    Ophthalmic Physiol Opt; 1988; 8(1):53-9. PubMed ID: 3047630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optical structure of the lens and its contribution to the refractive status of the eye.
    Smith G; Pierscionek BK
    Ophthalmic Physiol Opt; 1998 Jan; 18(1):21-9. PubMed ID: 9666907
    [No Abstract]   [Full Text] [Related]  

  • 15. [Microfluctuations in accommodation].
    Menozzi M; Krueger H
    Klin Monbl Augenheilkd; 1997 May; 210(5):325-6. PubMed ID: 9324544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AC/A ratio, age, and refractive error in children.
    Mutti DO; Jones LA; Moeschberger ML; Zadnik K
    Invest Ophthalmol Vis Sci; 2000 Aug; 41(9):2469-78. PubMed ID: 10937556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Construction of a model eye for simulation of Purkinje reflections for determining the radii of curvature and the position of the crystalline lens].
    Kirschkamp T; Jöckel M; Wählisch G; Barry JC
    Biomed Tech (Berl); 1998 Nov; 43(11):318-25. PubMed ID: 9885418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of pseudophakic accommodation with translation lenses using Purkinje image analysis.
    Langenbucher A; Jakob C; Reese S; Seitz B
    Ophthalmic Physiol Opt; 2005 Mar; 25(2):87-96. PubMed ID: 15713200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudophakic accommodation with translation lenses--dual optic vs mono optic.
    Langenbucher A; Reese S; Jakob C; Seitz B
    Ophthalmic Physiol Opt; 2004 Sep; 24(5):450-7. PubMed ID: 15315660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the ocular refractive components: the Reykjavik Eye Study.
    Olsen T; Arnarsson A; Sasaki H; Sasaki K; Jonasson F
    Acta Ophthalmol Scand; 2007 Jun; 85(4):361-6. PubMed ID: 17286626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.