BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26310504)

  • 1. Design of Phenylalanine-Containing Elastin-Derived Peptides Exhibiting Highly Potent Self-Assembling Capability.
    Maeda I; Taniguchi S; Watanabe N; Inoue A; Yamasaki Y; Nose T
    Protein Pept Lett; 2015; 22(10):934-9. PubMed ID: 26310504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimerization effects on coacervation property of an elastin-derived synthetic peptide (FPGVG)5.
    Suyama K; Taniguchi S; Tatsubo D; Maeda I; Nose T
    J Pept Sci; 2016 Apr; 22(4):236-43. PubMed ID: 27028208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison between coacervation property and secondary structure of synthetic peptides, Ile-containing elastin-derived pentapeptide repeats.
    Maeda I; Taniguchi S; Ebina J; Watanabe N; Hattori T; Nose T
    Protein Pept Lett; 2013 Aug; 20(8):905-10. PubMed ID: 23409853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements essential for elastin coacervation: favorable spatial arrangements of valine ridges on the three-dimensional structure of elastin-derived polypeptide (VPGVG)n.
    Maeda I; Fukumoto Y; Nose T; Shimohigashi Y; Nezu T; Terada Y; Kodama H; Kaibara K; Okamoto K
    J Pept Sci; 2011 Nov; 17(11):735-43. PubMed ID: 21919131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.
    Taniguchi S; Watanabe N; Nose T; Maeda I
    J Pept Sci; 2016 Jan; 22(1):36-42. PubMed ID: 26662843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coacervation properties in sequential polypeptide models of elastin. Synthesis of H-(Ala-Pro-Gly-Gly)n-Val-OMe and H-(Ala-Pro-Gly-Val-Gly)n-Val-OMe.
    Rapaka RS; Okamoto K; Urry DW
    Int J Pept Protein Res; 1978 Aug; 12(2):81-92. PubMed ID: 711374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible customization of the self-assembling abilities of short elastin-like peptide Fn analogs by substituting N-terminal amino acids.
    Suyama K; Shimizu M; Maeda I; Nose T
    Biopolymers; 2022 Oct; 113(10):e23521. PubMed ID: 35830538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W; McMillan RA; Snyder JP; Conticello VP
    J Am Chem Soc; 2005 Dec; 127(51):18121-32. PubMed ID: 16366565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depsipeptide analogues of elastin repeating sequences: conformational analysis.
    Arad O; Goodman M
    Biopolymers; 1990; 29(12-13):1652-68. PubMed ID: 2386811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptide hairpins with strand segments containing alpha- and beta-amino acid residues: cross-strand aromatic interactions of facing Phe residues.
    Roy RS; Gopi HN; Raghothama S; Gilardi RD; Karle IL; Balaram P
    Biopolymers; 2005; 80(6):787-99. PubMed ID: 15895435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of macrophage migration through lactose-insensitive receptor by elastin-derived nonapeptides and their analog.
    Maeda I; Mizoiri N; Briones MP; Okamoto K
    J Pept Sci; 2007 Apr; 13(4):263-8. PubMed ID: 17394124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties.
    Sumiyoshi S; Suyama K; Tanaka N; Andoh T; Nagata A; Tomohara K; Taniguchi S; Maeda I; Nose T
    Sci Rep; 2022 Nov; 12(1):19414. PubMed ID: 36371418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coacervation of sequential polypeptide models of tropoelastin. Synthesis of H-(Val-Ala-Pro-Gly)n-Val-OMe and H-(Val-Pro-Gly-Gly)n-Val-OMe.
    Rapaka RS; Urry DW
    Int J Pept Protein Res; 1978 Feb; 11(2):97-108. PubMed ID: 640777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stepwise Mechanism of Temperature-Dependent Coacervation of the Elastin-like Peptide Analogue Dimer, (C(WPGVG)
    Tatsubo D; Suyama K; Miyazaki M; Maeda I; Nose T
    Biochemistry; 2018 Mar; 57(10):1582-1590. PubMed ID: 29388768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of temperature-dependent elastin-like peptide-modified dendrimer for drug delivery.
    Kojima C; Irie K
    Biopolymers; 2013 Nov; 100(6):714-21. PubMed ID: 23893507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.
    Kojima C; Irie K; Tada T; Tanaka N
    Biopolymers; 2014 Jun; 101(6):603-12. PubMed ID: 24127292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of synthesized elastin peptides on human leukocytes.
    Hauck M; Seres I; Kiss I; Saulnier J; Mohacsi A; Wallach J; Fulop T
    Biochem Mol Biol Int; 1995 Sep; 37(1):45-55. PubMed ID: 8653087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and structural studies of a pentapeptide sequence of elastin. Poly (Val-Gly-Gly-Leu-Gly).
    Tamburro AM; Guantieri V; Gordini DD
    J Biomol Struct Dyn; 1992 Dec; 10(3):441-54. PubMed ID: 1492919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemotaxis of fibroblasts toward nonapeptide of elastin.
    Long MM; King VJ; Prasad KU; Urry DW
    Biochim Biophys Acta; 1988 Mar; 968(3):300-11. PubMed ID: 3345315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Aggregate Formation Through Aromatic Compound Adsorption in Elastin-like Peptide (FPGVG)
    Suyama K; Murashima M; Maeda I; Nose T
    Biomacromolecules; 2023 Nov; 24(11):5265-5276. PubMed ID: 37865930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.