These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26310580)

  • 1. Studying respiratory rhythm generation in a developing bird: Hatching a new experimental model using the classic in vitro brainstem-spinal cord preparation.
    Vincen-Brown MA; Whitesitt KC; Quick FG; Pilarski JQ
    Respir Physiol Neurobiol; 2016 Apr; 224():62-70. PubMed ID: 26310580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory rhythm generation and pattern formation: oscillators and network mechanisms.
    Ghali MGZ
    J Integr Neurosci; 2019 Dec; 18(4):481-517. PubMed ID: 31912709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two modes of respiratory rhythm generation in the newborn rat brainstem-spinal cord preparation.
    Onimaru H; Homma I
    Adv Exp Med Biol; 2008; 605():104-8. PubMed ID: 18085255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolated in vitro brainstem-spinal cord preparations remain important tools in respiratory neurobiology.
    Johnson SM; Turner SM; Huxtable AG; Ben-Mabrouk F
    Respir Physiol Neurobiol; 2012 Jan; 180(1):1-7. PubMed ID: 22015642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloride Modulates Central pH Sensitivity and Plasticity of Brainstem Breathing-Related Biorhythms in Zebra Finch Embryos.
    Whitaker-Fornek JR; Nelson JK; Pilarski JQ
    Dev Psychobiol; 2024 Sep; 66(6):e22518. PubMed ID: 38924086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maintenance of the large-scale depolarization wave in the embryonic chick brain against deprivation of the rhythm generator.
    Momose-Sato Y; Sato K
    Neuroscience; 2014 Apr; 266():186-96. PubMed ID: 24568731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of descending inputs on breathing pattern formation in the isolated bullfrog brainstem-spinal cord.
    Reid SG; Meier JT; Milsom WK
    Respir Physiol; 2000 May; 120(3):197-211. PubMed ID: 10828338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maturation of Breathing-Related Inhibitory Neurotransmission in the Medulla Oblongata of the Embryonic and Perinatal Zebra Finch (Taeniopygia guttata).
    Pickett KL; Stein PS; Vincen-Brown MA; Pilarski JQ
    Dev Neurobiol; 2018 Nov; 78(11):1081-1096. PubMed ID: 30160056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newborn rat brainstem preparation with the trigeminal nerve attached for pain study.
    Hamba M; Onimaru H
    Brain Res Brain Res Protoc; 1998 Sep; 3(1):7-13. PubMed ID: 9767080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The development of descending projections from the brainstem to the spinal cord in the fetal sheep.
    Stockx EM; Anderson CR; Murphy SM; Cooke IR; Berger PJ
    BMC Neurosci; 2007 Jun; 8():40. PubMed ID: 17577416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The in vitro neonatal rat spinal cord preparation: a new insight into mammalian locomotor mechanisms.
    Clarac F; Pearlstein E; Pflieger JF; Vinay L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 May; 190(5):343-57. PubMed ID: 14872261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fictively breathing tadpole brainstem preparation as a model for the development of respiratory pattern generation and central chemoreception.
    Gdovin MJ; Torgerson CS; Remmers JE
    Comp Biochem Physiol A Mol Integr Physiol; 1999 Nov; 124(3):275-86. PubMed ID: 10665380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory network function in the isolated brainstem-spinal cord of newborn rats.
    Ballanyi K; Onimaru H; Homma I
    Prog Neurobiol; 1999 Dec; 59(6):583-634. PubMed ID: 10845755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between medullary and spinal respiratory rhythm generators in the in vitro brainstem spinal cord preparation from newborn rats.
    Dubayle D; Viala D
    Exp Brain Res; 1996 Apr; 109(1):1-8. PubMed ID: 8740202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three brainstem areas involved in respiratory rhythm generation in bullfrogs.
    Baghdadwala MI; Duchcherer M; Paramonov J; Wilson RJ
    J Physiol; 2015 Jul; 593(13):2941-54. PubMed ID: 25952282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes within maturing neurons limit axonal regeneration in the developing spinal cord.
    Blackmore M; Letourneau PC
    J Neurobiol; 2006 Mar; 66(4):348-60. PubMed ID: 16408302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and pH sensitivity of the respiratory rhythm of fetal mice in vitro.
    Eugenín J; von Bernhardi R; Muller KJ; Llona I
    Neuroscience; 2006 Aug; 141(1):223-31. PubMed ID: 16675136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholaminergic modulation of the respiratory rhythm generator in the isolated brainstem-spinal cord preparation from neonatal rat.
    Arata A; Fujii M
    Adv Exp Med Biol; 2008; 605():83-7. PubMed ID: 18085251
    [No Abstract]   [Full Text] [Related]  

  • 19. Neural mechanisms underlying respiratory rhythm generation in the lamprey.
    Bongianni F; Mutolo D; Cinelli E; Pantaleo T
    Respir Physiol Neurobiol; 2016 Apr; 224():17-26. PubMed ID: 25220696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinal histogenesis in an altricial avian species, the zebra finch (Taeniopygia guttata, Vieillot 1817).
    Álvarez-Hernán G; Sánchez-Resino E; Hernández-Núñez I; Marzal A; Rodríguez-León J; Martín-Partido G; Francisco-Morcillo J
    J Anat; 2018 Jul; 233(1):106-120. PubMed ID: 29582431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.