BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26310676)

  • 1. Intrinsic and extrinsic determinants of central nervous system axon outgrowth into alginate-based anisotropic hydrogels.
    Pawar K; Prang P; Müller R; Caioni M; Bogdahn U; Kunz W; Weidner N
    Acta Biomater; 2015 Nov; 27():131-139. PubMed ID: 26310676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels.
    Pawar K; Mueller R; Caioni M; Prang P; Bogdahn U; Kunz W; Weidner N
    Acta Biomater; 2011 Jul; 7(7):2826-34. PubMed ID: 21521659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels.
    Prang P; Müller R; Eljaouhari A; Heckmann K; Kunz W; Weber T; Faber C; Vroemen M; Bogdahn U; Weidner N
    Biomaterials; 2006 Jul; 27(19):3560-9. PubMed ID: 16500703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-seeded alginate hydrogel scaffolds promote directed linear axonal regeneration in the injured rat spinal cord.
    Günther MI; Weidner N; Müller R; Blesch A
    Acta Biomater; 2015 Nov; 27():140-150. PubMed ID: 26348141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptides and Astroglia Improve the Regenerative Capacity of Alginate Gels in the Injured Spinal Cord.
    Schackel T; Kumar P; Günther M; Liu S; Brunner M; Sandner B; Puttagunta R; Müller R; Weidner N; Blesch A
    Tissue Eng Part A; 2019 Apr; 25(7-8):522-537. PubMed ID: 30351234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection.
    Gao M; Lu P; Bednark B; Lynam D; Conner JM; Sakamoto J; Tuszynski MH
    Biomaterials; 2013 Feb; 34(5):1529-36. PubMed ID: 23182350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties and chemical stability of alginate-based anisotropic capillary hydrogels.
    Nützl M; Schrottenbaum M; Müller T; Müller R
    J Mech Behav Biomed Mater; 2022 Oct; 134():105397. PubMed ID: 35932645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and delayed implantation of positively charged 2-hydroxyethyl methacrylate scaffolds in spinal cord injury in the rat.
    Hejcl A; Urdzikova L; Sedy J; Lesny P; Pradny M; Michalek J; Burian M; Hajek M; Zamecnik J; Jendelova P; Sykova E
    J Neurosurg Spine; 2008 Jan; 8(1):67-73. PubMed ID: 18173349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of cellular architecture, axonal growth, and blood vessel formation through cell-loaded polymer scaffolds in the transected rat spinal cord.
    Madigan NN; Chen BK; Knight AM; Rooney GE; Sweeney E; Kinnavane L; Yaszemski MJ; Dockery P; O'Brien T; McMahon SS; Windebank AJ
    Tissue Eng Part A; 2014 Nov; 20(21-22):2985-97. PubMed ID: 24854680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair.
    Martín-López E; Darder M; Ruiz-Hitzky E; Nieto Sampedro M
    Biomed Mater Eng; 2013; 23(5):405-21. PubMed ID: 23988711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Required growth facilitators propel axon regeneration across complete spinal cord injury.
    Anderson MA; O'Shea TM; Burda JE; Ao Y; Barlatey SL; Bernstein AM; Kim JH; James ND; Rogers A; Kato B; Wollenberg AL; Kawaguchi R; Coppola G; Wang C; Deming TJ; He Z; Courtine G; Sofroniew MV
    Nature; 2018 Sep; 561(7723):396-400. PubMed ID: 30158698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limitations in transplantation of astroglia-biomatrix bridges to stimulate corticospinal axon regrowth across large spinal lesion gaps.
    Deumens R; Koopmans GC; Honig WM; Maquet V; Jérôme R; Steinbusch HW; Joosten EA
    Neurosci Lett; 2006 Jun; 400(3):208-12. PubMed ID: 16530957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transitional zone and CNS regeneration.
    Fraher JP
    J Anat; 1999 Feb; 194(Pt 2)(Pt 2):161-82. PubMed ID: 10337949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aligned hydrogel tubes guide regeneration following spinal cord injury.
    Dumont CM; Carlson MA; Munsell MK; Ciciriello AJ; Strnadova K; Park J; Cummings BJ; Anderson AJ; Shea LD
    Acta Biomater; 2019 Mar; 86():312-322. PubMed ID: 30610918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implantation of Engineered Axon Tracts to Bridge Spinal Cord Injury Beyond the Glial Scar in Rats.
    Sullivan PZ; AlBayar A; Burrell JC; Browne KD; Arena J; Johnson V; Smith DH; Cullen DK; Ozturk AK
    Tissue Eng Part A; 2021 Oct; 27(19-20):1264-1274. PubMed ID: 33430694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of injectable forms of fibrin and fibronectin to support axonal ingrowth after spinal cord injury.
    King VR; Alovskaya A; Wei DY; Brown RA; Priestley JV
    Biomaterials; 2010 May; 31(15):4447-56. PubMed ID: 20206381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of factors regulating axon growth between the cortex and spinal cord in organotypic co-cultures: effects of age and neurotrophic factors.
    Oishi Y; Baratta J; Robertson RT; Steward O
    J Neurotrauma; 2004 Mar; 21(3):339-56. PubMed ID: 15115608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of a Matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat.
    Han S; Lee JY; Heo EY; Kwon IK; Yune TY; Youn I
    Biochem Biophys Res Commun; 2018 Feb; 496(3):785-791. PubMed ID: 29395078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic particle templating of hydrogels: engineering naturally derived hydrogel scaffolds with 3D aligned microarchitecture for nerve repair.
    Lacko CS; Singh I; Wall MA; Garcia AR; Porvasnik SL; Rinaldi C; Schmidt CE
    J Neural Eng; 2020 Feb; 17(1):016057. PubMed ID: 31577998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.