These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 26310708)
1. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water. Andjelkovic I; Jovic B; Jovic M; Markovic M; Stankovic D; Manojlovic D; Roglic G Environ Sci Pollut Res Int; 2016 Jan; 23(1):469-76. PubMed ID: 26310708 [TBL] [Abstract][Full Text] [Related]
2. Investigation of mechanism and critical parameters for removal of arsenic from water using Zr-TiO Anđelković I; Amaizah NRR; Marković SB; Stanković D; Marković M; Kuzmanović D; Roglić G Environ Technol; 2017 Sep; 38(17):2233-2240. PubMed ID: 27804788 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and Characterization of Magnetic Nanomaterials with Adsorptive Properties of Arsenic Ions. Wojciechowska A; Lendzion-Bieluń Z Molecules; 2020 Sep; 25(18):. PubMed ID: 32916914 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal. Nabi D; Aslam I; Qazi IA J Environ Sci (China); 2009; 21(3):402-8. PubMed ID: 19634455 [TBL] [Abstract][Full Text] [Related]
5. Enhanced removal of As(III) and As(V) from water by a novel zirconium-chitosan modified spherical sodium alginate composite. Lou S; Liu B; Qin Y; Zeng Y; Zhang W; Zhang L Int J Biol Macromol; 2021 Apr; 176():304-314. PubMed ID: 33587924 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable chitosan‑zirconium composite adsorptive membranes for potential arsenic (III/V) capture electrodialysis. Zhao X; Chen D; Zhang N; Shi M; Hu W; Yu G; Zhao R Int J Biol Macromol; 2024 Jan; 256(Pt 1):128356. PubMed ID: 37995789 [TBL] [Abstract][Full Text] [Related]
7. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Bang S; Patel M; Lippincott L; Meng X Chemosphere; 2005 Jul; 60(3):389-97. PubMed ID: 15924958 [TBL] [Abstract][Full Text] [Related]
8. Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Mohamed A; Osman TA; Toprak MS; Muhammed M; Uheida A Chemosphere; 2017 Aug; 180():108-116. PubMed ID: 28395148 [TBL] [Abstract][Full Text] [Related]
9. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties. Xu W; Wang J; Wang L; Sheng G; Liu J; Yu H; Huang XJ J Hazard Mater; 2013 Sep; 260():498-507. PubMed ID: 23811372 [TBL] [Abstract][Full Text] [Related]
10. Superparamagnetic nanomaterial Fe3O4-TiO2 for the removal of As(V) and As(III) from aqueous solutions. Beduk F Environ Technol; 2016; 37(14):1790-801. PubMed ID: 26831455 [TBL] [Abstract][Full Text] [Related]
11. Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin. Balaji T; Yokoyama T; Matsunaga H Chemosphere; 2005 May; 59(8):1169-74. PubMed ID: 15833491 [TBL] [Abstract][Full Text] [Related]
12. Arsenic sorption onto titanium dioxide, granular ferric hydroxide and activated alumina: batch and dynamic studies. Lescano MR; Passalía C; Zalazar CS; Brandi RJ J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(4):424-31. PubMed ID: 25723069 [TBL] [Abstract][Full Text] [Related]
13. Efficient removal of arsenic(III) from aqueous media using magnetic polyaniline-doped strontium-titanium nanocomposite. Mohammadi Nodeh MK; Gabris MA; Rashidi Nodeh H; Esmaeili Bidhendi M Environ Sci Pollut Res Int; 2018 Jun; 25(17):16864-16874. PubMed ID: 29619640 [TBL] [Abstract][Full Text] [Related]
14. pH effects of the arsenite photocatalytic oxidation reaction on different anatase TiO Wei Z; Fang Y; Wang Z; Liu Y; Wu Y; Liang K; Yan J; Pan Z; Hu G Chemosphere; 2019 Jun; 225():434-442. PubMed ID: 30889407 [TBL] [Abstract][Full Text] [Related]
15. Adsorption and removal of arsenic (V) using crystalline manganese (II,III) oxide: Kinetics, equilibrium, effect of pH and ionic strength. Babaeivelni K; Khodadoust AP; Bogdan D J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(13):1462-73. PubMed ID: 25137534 [TBL] [Abstract][Full Text] [Related]
16. Removal of trace arsenic(V) and phosphate from water by a highly selective ligand exchange adsorbent. Awual MR; El-Safty SA; Jyo A J Environ Sci (China); 2011; 23(12):1947-54. PubMed ID: 22432323 [TBL] [Abstract][Full Text] [Related]
17. Enhanced selective removal of arsenic(V) using a hybrid nanoscale zirconium molybdate embedded anion exchange resin. Bui TH; Hong SP; Yoon J Environ Sci Pollut Res Int; 2019 Dec; 26(36):37046-37053. PubMed ID: 31745776 [TBL] [Abstract][Full Text] [Related]
18. Direct removal of aqueous As(III) and As(V) by amorphous titanium dioxide nanotube arrays. Wu S; Hu W; Luo X; Deng F; Yu K; Luo S; Yang L; Tu X; Zeng G Environ Technol; 2013; 34(13-16):2285-90. PubMed ID: 24350483 [TBL] [Abstract][Full Text] [Related]
19. Polymer composite adsorbents using particles of molecularly imprinted polymers or aluminium oxide nanoparticles for treatment of arsenic contaminated waters. Önnby L; Pakade V; Mattiasson B; Kirsebom H Water Res; 2012 Sep; 46(13):4111-20. PubMed ID: 22687522 [TBL] [Abstract][Full Text] [Related]
20. Zirconium/polyvinyl alcohol modified flat-sheet polyvinyldene fluoride membrane for decontamination of arsenic: Material design and optimization, study of mechanisms, and application prospects. Zhao D; Yu Y; Chen JP Chemosphere; 2016 Jul; 155():630-639. PubMed ID: 27174848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]