These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 26310766)

  • 1. Substitutional doping in nanocrystal superlattices.
    Cargnello M; Johnston-Peck AC; Diroll BT; Wong E; Datta B; Damodhar D; Doan-Nguyen VV; Herzing AA; Kagan CR; Murray CB
    Nature; 2015 Aug; 524(7566):450-3. PubMed ID: 26310766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials.
    Boles MA; Engel M; Talapin DV
    Chem Rev; 2016 Sep; 116(18):11220-89. PubMed ID: 27552640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anisotropic Cracking of Nanocrystal Superlattices.
    Diroll BT; Ma X; Wu Y; Murray CB
    Nano Lett; 2017 Oct; 17(10):6501-6506. PubMed ID: 28921994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices.
    Jishkariani D; Elbert KC; Wu Y; Lee JD; Hermes M; Wang D; van Blaaderen A; Murray CB
    ACS Nano; 2019 May; 13(5):5712-5719. PubMed ID: 31050884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films.
    Urban JJ; Talapin DV; Shevchenko EV; Kagan CR; Murray CB
    Nat Mater; 2007 Feb; 6(2):115-21. PubMed ID: 17237786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterovalent-Doping-Enabled Efficient Dopant Luminescence and Controllable Electronic Impurity Via a New Strategy of Preparing II-VI Nanocrystals.
    Liu J; Zhao Q; Liu JL; Wu YS; Cheng Y; Ji MW; Qian HM; Hao WC; Zhang LJ; Wei XJ; Wang SG; Zhang JT; Du Y; Dou SX; Zhu HS
    Adv Mater; 2015 May; 27(17):2753-61. PubMed ID: 25821075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic properties of atomically coherent square PbSe nanocrystal superlattice resolved by Scanning Tunneling Spectroscopy.
    Capiod P; van der Sluijs M; de Boer J; Delerue C; Swart I; Vanmaekelbergh D
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33930872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Doping semiconductor nanocrystals.
    Erwin SC; Zu L; Haftel MI; Efros AL; Kennedy TA; Norris DJ
    Nature; 2005 Jul; 436(7047):91-4. PubMed ID: 16001066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal Self-Assembly of Inorganic Nanocrystals into Superlattice Thin-Films and Multiscale Nanostructures.
    Yun H; Paik T
    Nanomaterials (Basel); 2019 Sep; 9(9):. PubMed ID: 31480547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential positioning of dopants and co-dopants in embedded and freestanding Si nanocrystals.
    Guerra R; Ossicini S
    J Am Chem Soc; 2014 Mar; 136(11):4404-9. PubMed ID: 24564481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films.
    Urban JJ; Talapin DV; Shevchenko EV; Murray CB
    J Am Chem Soc; 2006 Mar; 128(10):3248-55. PubMed ID: 16522106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent multiple twinning in nanocrystal superlattices.
    Rupich SM; Shevchenko EV; Bodnarchuk MI; Lee B; Talapin DV
    J Am Chem Soc; 2010 Jan; 132(1):289-96. PubMed ID: 19968283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge Transport Modulation in PbSe Nanocrystal Solids by Au
    Yang H; Wong E; Zhao T; Lee JD; Xin HL; Chi M; Fleury B; Tang HY; Gaulding EA; Kagan CR; Murray CB
    ACS Nano; 2018 Sep; 12(9):9091-9100. PubMed ID: 30148956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Atomic Coherence in the Self-Assembly of Patchy Heterostructural Nanocrystals.
    Zhu H; Fan Z; Song S; Eggert D; Liu Y; Shi W; Yuan Y; Kim KS; Grünwald M; Chen O
    ACS Nano; 2022 Sep; 16(9):15053-15062. PubMed ID: 36048768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport Properties of a Two-Dimensional PbSe Square Superstructure in an Electrolyte-Gated Transistor.
    Alimoradi Jazi M; Janssen VAEC; Evers WH; Tadjine A; Delerue C; Siebbeles LDA; van der Zant HSJ; Houtepen AJ; Vanmaekelbergh D
    Nano Lett; 2017 Sep; 17(9):5238-5243. PubMed ID: 28805396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots.
    Redl FX; Cho KS; Murray CB; O'Brien S
    Nature; 2003 Jun; 423(6943):968-71. PubMed ID: 12827196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of high-index faceted gold nanocrystals to fabricate tunable coupled plasmonic superlattices.
    Zhang H; Guan C; Song N; Zhang Y; Liu H; Fang J
    Phys Chem Chem Phys; 2018 Jan; 20(5):3571-3580. PubMed ID: 29337328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.