These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26310856)

  • 1. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.
    Williams HW; Cross DE; Crump HL; Drost CJ; Thomas CJ
    Parasit Vectors; 2015 Aug; 8():440. PubMed ID: 26310856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perspectives on modelling the distribution of ticks for large areas: so far so good?
    Estrada-Peña A; Alexander N; Wint GR
    Parasit Vectors; 2016 Mar; 9():179. PubMed ID: 27030357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amblyomma ticks and future climate: Range contraction due to climate warming.
    Oliveira SV; Romero-Alvarez D; Martins TF; Santos JPD; Labruna MB; Gazeta GS; Escobar LE; Gurgel-Gonçalves R
    Acta Trop; 2017 Dec; 176():340-348. PubMed ID: 28865899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus.
    Alkishe AA; Peterson AT; Samy AM
    PLoS One; 2017; 12(12):e0189092. PubMed ID: 29206879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A GIS framework for the assessment of tick impact on human health in a changing climate.
    Estrada-Peña A; Venzal JM
    Geospat Health; 2007 May; 1(2):157-68. PubMed ID: 18686241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate, niche, ticks, and models: what they are and how we should interpret them.
    Estrada-Peña A
    Parasitol Res; 2008 Dec; 103 Suppl 1():S87-95. PubMed ID: 19030890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climate change and species distribution: possible scenarios for thermophilic ticks in Romania.
    Domșa C; Sándor AD; Mihalca AD
    Geospat Health; 2016 May; 11(2):421. PubMed ID: 27245802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change.
    Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE
    PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix-assisted laser desorption/ionization time of flight mass spectrometry for comprehensive indexing of East African ixodid tick species.
    Rothen J; Githaka N; Kanduma EG; Olds C; Pflüger V; Mwaura S; Bishop RP; Daubenberger C
    Parasit Vectors; 2016 Mar; 9():151. PubMed ID: 26979606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The predictive skill of species distribution models for plankton in a changing climate.
    Brun P; Kiørboe T; Licandro P; Payne MR
    Glob Chang Biol; 2016 Sep; 22(9):3170-81. PubMed ID: 27040720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Habitat availability and gene flow influence diverging local population trajectories under scenarios of climate change: a place-based approach.
    Schwalm D; Epps CW; Rodhouse TJ; Monahan WB; Castillo JA; Ray C; Jeffress MR
    Glob Chang Biol; 2016 Apr; 22(4):1572-84. PubMed ID: 26667878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate change decreases habitat suitability for some tick species (Acari: Ixodidae) in South Africa.
    Estrada-Peña A
    Onderstepoort J Vet Res; 2003 Jun; 70(2):79-93. PubMed ID: 12967169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forecasting habitat suitability for ticks and prevention of tick-borne diseases.
    Estrada-Peña A
    Vet Parasitol; 2001 Jul; 98(1-3):111-32. PubMed ID: 11516582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distributional constraints, and impact of climate change.
    Estrada-Peña A; Venzal JM
    J Med Entomol; 2007 Nov; 44(6):1130-8. PubMed ID: 18047215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.
    Rougier T; Lassalle G; Drouineau H; Dumoulin N; Faure T; Deffuant G; Rochard E; Lambert P
    PLoS One; 2015; 10(10):e0139194. PubMed ID: 26426280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using invaded range data to model the climate suitability for Amblyomma variegatum (Acari: Ixodidae) in the New World.
    Estrada-Peña A; Pegram RG; Barré N; Venzal JM
    Exp Appl Acarol; 2007; 41(3):203-14. PubMed ID: 17347921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting Large-Scale Habitat Suitability of European Bustards under Climate Change: The Role of Environmental and Geographic Variables.
    Estrada A; Delgado MP; Arroyo B; Traba J; Morales MB
    PLoS One; 2016; 11(3):e0149810. PubMed ID: 26939133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Likelihood of changes in forest species suitability, distribution, and diversity under future climate: The case of Southern Europe.
    Noce S; Collalti A; Santini M
    Ecol Evol; 2017 Nov; 7(22):9358-9375. PubMed ID: 29187974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.
    Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA
    Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Malaria vectors in South America: current and future scenarios.
    Laporta GZ; Linton YM; Wilkerson RC; Bergo ES; Nagaki SS; Sant'Ana DC; Sallum MA
    Parasit Vectors; 2015 Aug; 8():426. PubMed ID: 26283539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.