These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 26310856)

  • 21. Species distribution modelling for Rhipicephalus microplus (Acari: Ixodidae) in Benin, West Africa: comparing datasets and modelling algorithms.
    De Clercq EM; Leta S; Estrada-Peña A; Madder M; Adehan S; Vanwambeke SO
    Prev Vet Med; 2015 Jan; 118(1):8-21. PubMed ID: 25466219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uncertainties in the projection of species distributions related to general circulation models.
    Goberville E; Beaugrand G; Hautekèete NC; Piquot Y; Luczak C
    Ecol Evol; 2015 Mar; 5(5):1100-16. PubMed ID: 25798227
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlative climatic niche models predict real and virtual species distributions equally well.
    Journé V; Barnagaud JY; Bernard C; Crochet PA; Morin X
    Ecology; 2020 Jan; 101(1):e02912. PubMed ID: 31605622
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can species distribution models really predict the expansion of invasive species?
    Barbet-Massin M; Rome Q; Villemant C; Courchamp F
    PLoS One; 2018; 13(3):e0193085. PubMed ID: 29509789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pace of past climate change vs. potential bird distributions and land use in the United States.
    Bateman BL; Pidgeon AM; Radeloff VC; VanDerWal J; Thogmartin WE; Vavrus SJ; Heglund PJ
    Glob Chang Biol; 2016 Mar; 22(3):1130-44. PubMed ID: 26691721
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A phyloclimatic study of Cyclamen.
    Yesson C; Culham A
    BMC Evol Biol; 2006 Sep; 6():72. PubMed ID: 16987413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data.
    Bateman BL; Pidgeon AM; Radeloff VC; Flather CH; VanDerWal J; Akçakaya HR; Thogmartin WE; Albright TP; Vavrus SJ; Heglund PJ
    Ecol Appl; 2016 Dec; 26(8):2718-2729. PubMed ID: 27907262
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Climate changes and suitability for the ticks Amblyomma hebraeum and Amblyomma variegatum (Ixodidae) in Zimbabwe (1974-1999).
    Estrada-Peña A; Horak IG; Petney T
    Vet Parasitol; 2008 Feb; 151(2-4):256-67. PubMed ID: 18083309
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Global Climate Change Effects on Venezuela's Vulnerability to Chagas Disease is Linked to the Geographic Distribution of Five Triatomine Species.
    Ceccarelli S; Rabinovich JE
    J Med Entomol; 2015 Nov; 52(6):1333-43. PubMed ID: 26336258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling plant species distributions under future climates: how fine scale do climate projections need to be?
    Franklin J; Davis FW; Ikegami M; Syphard AD; Flint LE; Flint AL; Hannah L
    Glob Chang Biol; 2013 Feb; 19(2):473-83. PubMed ID: 23504785
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Old health risks in new places? An ecological niche model for I. ricinus tick distribution in Europe under a changing climate.
    Boeckmann M; Joyner TA
    Health Place; 2014 Nov; 30():70-7. PubMed ID: 25216209
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Looking forward by looking back: using historical calibration to improve forecasts of human disease vector distributions.
    Acheson ES; Kerr JT
    Vector Borne Zoonotic Dis; 2015 Mar; 15(3):173-83. PubMed ID: 25793472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling distribution in European stream macroinvertebrates under future climates.
    Domisch S; Araújo MB; Bonada N; Pauls SU; Jähnig SC; Haase P
    Glob Chang Biol; 2013 Mar; 19(3):752-62. PubMed ID: 23504833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the potential habitat for Ornithodoros tick species in China.
    Wu B; Li X; Liu J; Bao R
    Vet Parasitol; 2022 Nov; 311():109793. PubMed ID: 36084522
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia.
    Briscoe NJ; Kearney MR; Taylor CA; Wintle BA
    Glob Chang Biol; 2016 Jul; 22(7):2425-39. PubMed ID: 26960136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Know your limits? Climate extremes impact the range of Scots pine in unexpected places.
    Julio Camarero J; Gazol A; Sancho-Benages S; Sangüesa-Barreda G
    Ann Bot; 2015 Nov; 116(6):917-27. PubMed ID: 26292992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator.
    Hill NJ; Tobin AJ; Reside AE; Pepperell JG; Bridge TC
    Glob Chang Biol; 2016 Mar; 22(3):1086-96. PubMed ID: 26464050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Driven to the edge: Species distribution modeling of a Clawed Salamander (Hynobiidae:
    Shin Y; Min MS; Borzée A
    Ecol Evol; 2021 Nov; 11(21):14669-14688. PubMed ID: 34765133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.
    Brown JL; Weber JJ; Alvarado-Serrano DF; Hickerson MJ; Franks SJ; Carnaval AC
    Am J Bot; 2016 Jan; 103(1):153-63. PubMed ID: 26747843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mountain landscapes offer few opportunities for high-elevation tree species migration.
    Bell DM; Bradford JB; Lauenroth WK
    Glob Chang Biol; 2014 May; 20(5):1441-51. PubMed ID: 24353188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.